• Title/Summary/Keyword: Open die Forging

Search Result 51, Processing Time 0.02 seconds

3차원 강소성 유한요소해석을 사용한 전자부품의 정밀단조공정 설계

  • Park, Geun;Kang, Yeon-Sik;Yang, Dong-Yeol
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.932-936
    • /
    • 1997
  • In order to increase the productivity of electrical parts, manufacturing processes using progressive die have been widely used in the industry. If closed-die forging process may be included in the series of the forming process, however, there arise many problems in the die design, such as determination of blank size, feeding method and formability, etc. For the proper design of a process, a prediction of the process is requred to obtain many design parameters. In this work, three-dimensional rigid-plastic finite element analysis is carried out to simulate precision forging process. The forging process of STEM, a part of photo pick-up hologram device, is simulated with the two types of processes, open die forging and semi-closed die forging, respectively. Form the results of analyses, the forging processes can be predicted successfully, which enables to design appropriately the die and the process.

  • PDF

Development of the Large Tubesheet Forgings for Nuclear Power Plant (원자력 발전소용 대형 튜브시트 단강품의 개발)

  • Kim, D.K.;Kim, Y.D.;Kim, D.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.176-179
    • /
    • 2006
  • Large tubesheet forgings of the steam generator for the 1,400MW nuclear power plant has been developed. Steam Generator is one of the most important structural part for nuclear power plant. It is manufactured by various steel forgings such as shell, head, torus and tubesheet. These steel forgings have been made by open die forging process. After steel melting and ingot making, open die forging has been carried out to get a good quality which means high soundness and homogeniety of the steel forgings by using high capacity hydraulic press. This paper introduced the forging process development and manufacturing experience of large tubesheet forgings which will be used for the steam generator of 1,400MW nuclear power plant.

  • PDF

A Study of Multiple Scale FEM Modeling for Prediction of Inner Void Closing Behavior in Open Die Forging Process (자유단조 공정 시 내부 기공 거동 예측을 위한 멀티스케일 유한요소해석 연구)

  • Kwak, E.J.;Kang, G.P.;Lee, K.
    • Transactions of Materials Processing
    • /
    • v.21 no.5
    • /
    • pp.319-323
    • /
    • 2012
  • In order to predict the internal void closing behavior in open die forging process, multiple scale modeling has been developed and applied. The huge size difference between ingot and inner void makes it almost impossible to simultaneously model the actual loading conditions and the void shape. Multiple scale modeling is designed to integrate macro- and micro- models effectively and efficiently. The void closing behavior was simulated at 39 different locations in a large ingot during upsetting and cogging. The correlation between the closing behavior and variables such as effective plastic strain and maximum compressive strain was studied in order to find an efficient measure for predicting the soundness of the forging.

A study on Cavity Closure Behavior During Hot Open Die Forging Process (열간 자유단조 공정시 내부 공극 압착 거동에 관한 연구)

  • Kwon, Y.C.;Lee, J.H.;Lee, S.W.;Jung, Y.S.;Kim, N.S.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.293-298
    • /
    • 2007
  • Recently, there is a need to produce a large forged part for the flight, shipping, some energies, and military industries, etc. Therefore, an open die forging technique of cast ingots is required to obtain higher quality of large size forged parts. Cogging process is one of the primary stages in many open die forging processes. In the cogging process prior to some open die forging processes, internal cavities have to be eliminated for defect-free. The present work is concerned with the elimination of the internal cavities in large ingots so as to obtain sound products. In this study, hot compression tests were carried out to obtain the flow stress of cast microstructure at different temperature and strain rates. The FEM analysis is performed to investigate the overlap defect of cast ingots during cogging stage. The measured flow stress data were used to simulate the cogging process of cast ingot using the practical material properties. Also the analysis of cavity closure is performed by using the $DEFORM^{TM}-3D$. The calculated results of cavity closure behavior are compared with the measured results before and after cogging, which are scanned by the X-ray scanner. From this result, the criteria for deformation amounts effect on the cavity closure can be investigated by the comparison between practical experiment and numerical analysis.

Dimensional accuracy and ejecting stage in cold forging (냉간단조의 Ejecting 공정이 치수정밀도에 미치는 영향)

  • Chun S. H.;Lee Y. S.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.338-341
    • /
    • 2004
  • The dimension of forged part is different with the die dimension by the various effects, such as, elastic deformation and thermal effect. And, the difference amounts are not same according to the forging conditions, for example, forging mode, flow stress, etc. Therefore, the use of FEA is effective to predict and update the required die dimension. However, the variables for FE simulation are also as many as variables in the experiment. The variables give very much effect to the accuracy of FE results. At first, the material model is very deeply affected to the estimated dimension of forged part. And the considering of loading and ejecting stages is also important to increase the dimensional accuracy. The experiment and FEA are performed to investigate the dimensional changes and accuracy in cold forging. Two types of upsetting are used to survey the effects of forging mode and stages.

  • PDF

FEM Analysis for the Prediction of Void Closure On the Open Die Forging Process (자유단조공정에서 기공폐쇄 예측을 위한 유한요소해석)

  • Min, K.Y.;Lim, S.J.;Choi, H.J.;Choi, S.;Park, Y.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.71-74
    • /
    • 2008
  • In order to resolve the problems which appear after the clean large ingot production process, the impurities which are involved in the steel smelting process should be removed by developing cleaner materials. Through the rationalization of cogging process that is the first forging process of large ingot the quality is to be improved. For the sake of the optimization of an open die forging process and the improvement of the subject matter frequency ratio, a hazard precise die forging process must be developed and a Near Net Shape Forming accomplished. As a result, energy can be reduced by minimizing an after control process. In order to produce large axes and other forming parts, processing techniques are to be developed. In this context, this paper is a study about a reduction ratio, dies width ratio and rotary angles, the amount of overlap, and intends to analysis cogging processes, utilizing Deform-3D cogging module

  • PDF

Analysis of Residual Stress Development in Open-Die Forged Axisymmetric Parts Using FEM (축대칭 형상 자유단조품의 잔류응력 형성에 대한 유한요소해석)

  • Bang W.;Jung J. Y.;Chang Y. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.233-235
    • /
    • 2001
  • Residual stress in the forged parts affects the resistance to mechanical failure, dimensional uniformity, and the service life of the parts. In order to elucidate the development of residual stress in open-die forging process, elasto-plastic finite element analysis was implemented to radial forging process. Super duplex stainless steel SAF 2507 was selected as workpiece material and a series of mechanical tests followed by numerical compensation to deformation heating was conducted to obtain necessary flow data. The residual stress distributions were calculated using commercial 3-D FEM code and the effects of process design were evaluated from selected results.

  • PDF

Finite Element Simulation of a Pore Closing Process during Upsetting in Open Die Forging (자유단조에서 업세팅 공정 중 기공 압착 과정의 유한요소 시뮬레이션)

  • Lee, M.C.;Cho, J.H.;Choi, I.S.;Jang, S.M.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.79-83
    • /
    • 2008
  • We carry out three-dimensional simulation of pore closing processes during upsetting in open die forging. Several pores on a plane section of a cylindrical material are traced at the same time and the results of hydrostatic pressure and effective strain are discussed to reveal the parameters affecting pore closing phenomena. Five different sizes of pores are also investigated by simulation to reveal the pore size effect in pore closing during upsetting. AFDEX 3D is employed for this study.

  • PDF

A Door Frame for Wind Turbine Towers Using Open-Die Forging and Ring-Rolling Method (열간자유단조와 링롤링공법을 이용한 풍력발전기용 도아프레임 개발)

  • Kwon, Yong Chul;Kang, Jong Hun;Kim, Sang Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.721-727
    • /
    • 2015
  • The mechanical components for wind turbines are mainly manufactured using open-die forging. This research introduces an advanced forging method to produce the door frame of the tubular wind turbine tower. The advantages of this new forging method are an increase in the raw material utilization ratio and a reduction in energy cost. In the conventional method, the door frame is hot forged with a hydraulic press and amounts of material are machined out because of the shape difference between the forged and final machine products. The proposed forging method is composed of hot forging and ring rolling processes to increase the material utilization ratio. The effectiveness of this new forging method is deeply related to the ring rolled blank dimension before the final forging. To get the optimal ring rolled blank, forged shape prediction using the finite element analysis method was applied. The forged dimensions produced by the new forging method were verified through the first article production.