• Title/Summary/Keyword: Open Dumping

Search Result 37, Processing Time 0.027 seconds

A Basic Study of Solidification for the Waste in the illegal(Open) Bumping Landfill (불량매립지 폐기물의 고형화를 위한 기초적 연구)

  • 이재영
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.1
    • /
    • pp.75-81
    • /
    • 1998
  • In most of studies on solidification/stabilization with waste, small columns have been used to examinate adsorption or leachate. However, these experiments using small apparatus have been limited to apply with the field. In this study, considering an application to the field, a large Lysimeter(100cm$\times$100cm$\times$100cm) used for the simulation. Then, the open dumping waste was mixed directly with bentonite to simulate the stabilization of waste, environmental aspects and several basic tests. As a result, the concentration of heavy metals and contaminated substances changed with bentonite rate. Most of contaminated substances were decreased in leaching with increased mixing rate of bentonite. Especially, the concentration of CODcr removed 25~30%. Also, the residual soil in dumping waste produced approximately 80% of total volume by 40$\times$40mm screen.

  • PDF

Re-formation plan of open dumping landfill for coastal management (연안환경관리를 위한 연안불량매립지 교정방법 비교고찰)

  • Yoon, Sung-Yoon
    • Journal of Wetlands Research
    • /
    • v.2 no.2
    • /
    • pp.109-116
    • /
    • 2000
  • The equipment of a landfill need whole cut off facilities so that leachate generated from the landfill primarily do not leak to the ocean. Also, the whole collected leachate need a consecutive clarification treatment to discharge. A method is considered the best among the three alternatives. The merits of this method are as follows; have no secondary pollution. can cut down the expense of treatment, have good effects on preventing external leakage, don't need a leachate well, reliable quality control and easy post management. The weaknesses of this method are as follows; need a thorough survey about underground water and quality of the soil, need a special process to use as the land.

  • PDF

Assessment of Stabilization of An Open-dumping Landfill - A Case Study of Noeun Landfill - (비위생매립지의 안정화 평가 - 노은 매립지 사례연구 -)

  • Hong, Sang-Pyo;Kim, Kwang-Yul
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.2
    • /
    • pp.47-53
    • /
    • 2005
  • 노은 매립지는 사용종료된지 5년이 경과된 비위생매립지로 최종복토는 되어 있으나 침출수 차집시설 및 매립가스 포집설비가 제대로 갖추어지지 않은 상태이다. 환경부의 사용종료 매립 지 정비지침에 의하면 침출수의 BOD/CODcr 비율이 1/10 수준임으로 침출수의 안정화 과정이 거의 완결상태로 진행되고 있는 것으로 판단된다. 매립지 가스의 안정화 측면에서는 CH4의 비 율이 5%정도이기 때문에 안정화가 거의 이루어진 것으로 볼 수 있다. 매립된 쓰레기 중에서 플 라스틱을 제외한 가연물 함량이 3.97 - 9.34%이기 때문에 매립폐기물은 안정화 기준에 미흡한 상태이다. 그리고 지하수는 대장균 항목이 지하수 수질기준 생활용수 기준에 미흡하여 안정화 기준을 충족시키지 못하고 있다. 노은매립지는 매립지 안정화의 속도가 평가 대상별로 상이하 게 진행되는 것으로 평가된다.

Remediation capabilities of pilot-scale wetlands planted with Typha aungstifolia and Acorus calamus to treat landfill leachate

  • Bhagwat, Rohit V.;Boralkar, Dilip B.;Chavhan, Ram D.
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.191-198
    • /
    • 2018
  • Improper management and unsanitary approaches are implemented in disposal of leachate, which has resulted in groundwater pollution at village Uruli Devachi, Pune, India. Various physico-chemical treatment methods are commercially available for leachate treatment. However, the application of biological methods viz. phytoremediation to the municipal solid waste landfill leachate has been limited. We report the remediation ability of Typha aungstifolia and Acrorus calamus that is capable of reducing hazardous constituents from the landfill leachate. After 96 h of hydraulic retention time (HRT), it was observed that T. aungstifolia-treated sample showed high reduction potential in reducing biochemical oxygen demand, chemical oxygen demand, hardness, total dissolved solids, Na, Mg, Ca and Ni whereas A. calamus showed greater reduction capacity for alkalinity, Cl, Cu, Zn and Cr. Furthermore, it was also observed that T. aungstifolia withstood longer HRT than A. calamus. In situ application of T. aungstifolia and A. calamus for remediation of landfill leachate carries a tremendous potential that needs to be further explored.

Effects of waste dumpsites on geotechnical properties of the underlying soils in wet season

  • Essienubong, Ikpe Aniekan;Okechukwu, Ebunilo Patrick;Ejuvwedia, Sadjere Godwin
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.289-297
    • /
    • 2019
  • Indiscriminate disposal of waste and citation of open dumpsites are some of the key factors affecting the various soil geotechnical properties. Atterberg limit and consolidation tests were conducted to determine the effects of two open waste dumpsites (Uselu Market and New Benin) on geotechnical properties of their underlying soils. Soil sample collected from Uselu Market dumpsite in Benin City metropolis showed slightly lower hydraulic conductivity (K) of $1.0{\times}10^{-6}$ with plasticity index of 18.53% compared to sample collected 1.6 m from the same dumpsite which had high K value of $2.42{\times}10^{-3}$ with plasticity index of 6.9%. Soil sample collected from New Benin dumpsite in Benin City metropolis showed slightly lower K of $1.45{\times}10^{-6}$ with plasticity index of 13.8% than sample collected 1.6 m from the same dumpsite which had high K value of $2.14{\times}10^{-2}$ with plasticity index of 6.0%. X-ray florescent analyser (X-MET 7000) and direct soil pH meter were used to determine the composition of the aforementioned soil samples. The result of samples collected from both dumpsites indicated a low hydraulic conductivity compared to samples collected 1.6 m from both dumpsites. Also, the chemical composition and pH of both dumpsite underlying soils indicated high level of soil contaminants with pH of 3.3 and 3.5 which is very acidic unlike pH of other samples which were in the neutral range (6.8-7.1). Hence, a liner is recommended for all dumpsites or engineered landfill systems to mitigate against the challenges associated with open waste dumping system in the environment.

Seasonal characterization and present status of municipal solid waste (MSW) management in Varanasi, India

  • Dasgupta, Betty;Yadav, Vijay Laxmi;Mondal, Monoj Kumar
    • Advances in environmental research
    • /
    • v.2 no.1
    • /
    • pp.51-60
    • /
    • 2013
  • The paper aims to characterise the waste generated in municipality of Varanasi, the most populated city in the state of Uttar Pradesh, India. MSW is a heterogeneous waste and composition of the waste varied from season to season. The generation, collection and management of waste have become a major environmental problem in most of the developing cities. MSW was collected from open dumping grounds for 2 consecutive years. Each year was classified into 3 seasons of 4 months. On analysis it was found that the biodegradable fraction is always more than other fractions with a minimum of 48.25% in rainy season. With such a high fraction of biodegradable wastes, options such as composting and biomethanation could be tried to convert waste into energy. The average weight of waste generation at present is 0.460 kg per capita per day. The study showed that waste generation and collection were increasing every year, which may be attributed to increase in population.

Characterization of household solid waste and current status of municipal waste management in Rishikesh, Uttarakhand

  • Rawat, Suman;Daverey, Achlesh
    • Environmental Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.323-329
    • /
    • 2018
  • The municipal solid waste (MSW) management system in one of the Class II Indian cities i.e. Rishikesh was studied and analysed to identify the key issues in solid waste management in the city. A total of 329 solid waste samples from 47 households were collected to characterize the household solid waste (HSW). The average (HSW) generation rate was 0.26 kg/c/d and it was composed of organic waste (57.3%), plastics (14%), paper (10.9%), and glass and ceramic (1.3%) and other materials (16.5%). There was an inverse relationship between household waste generation rate and family size (p < 0.05). The MSW management system practiced in Rishikesh is unsound. There is no waste segregation at source, no provisions of composting and no recycling by formal sector. The collection and transportation of waste is inadequate and inappropriate. Collected waste is dumped in open dumping site without scientific management. Following are some recommendations for developing a sustainable solid waste management system in Rishikesh city: (1) sensitize people for segregation at source; (2) promote reduction, reuse and recycling of wastes; (3) promote community based composting; (4) provision for 100% door to door collection and; (5) formalize the informal sectors such as rag pickers and recycling industries.

The Method of Abandoned Object Recognition based on Neural Networks (신경망 기반의 유기된 물체 인식 방법)

  • Ryu, Dong-Gyun;Lee, Jae-Heung
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1131-1139
    • /
    • 2018
  • This paper proposes a method of recognition abandoned objects using convolutional neural networks. The method first detects an area for an abandoned object in image and, if there is a detected area, applies convolutional neural networks to that area to recognize which object is represented. Experiments were conducted through an application system that detects illegal trash dumping. The experiments result showed the area of abandoned object was detected efficiently. The detected areas enter the input of convolutional neural networks and are classified into whether it is a trash or not. To do this, I trained convolutional neural networks with my own trash dataset and open database. As a training result, I achieved high accuracy for the test set not included in the training set.

Municipal solid waste management in India - Current status, management practices, models, impacts, limitations, and challenges in future

  • Jagriti Patel;Sanskriti Mujumdar;Vijay Kumar Srivastava
    • Advances in environmental research
    • /
    • v.12 no.2
    • /
    • pp.95-111
    • /
    • 2023
  • Pollution, climate change, and waste accumulation are only some of the new problems that have arisen because of the exponential population growth of the past few decades. As the global population expands, managing municipal solid trash becomes increasingly difficult. This is by far the most difficult obstacle for governments to overcome, especially in less developed nations. The improper open dumping of trash, which is causing mayhem across the country, has two immediate effects: it contaminates groundwater and surface water. Air pollution and the accumulation of greenhouse gases are both exacerbated by the release of methane and other harmful waste gases. Leachate from the landfill leaks underground and pollutes groundwater. In most cases, leachate moves into the groundwater zone and pollutes it after forming in association with precipitation that infiltrates via waste. This has far-reaching effects on people's health and disturbs the natural environment. This review article critically examines the current state of Solid Waste Management (SWM), addressing both the highlighted concerns and the government management solutions that have been put in place to address these issues. In addition, the constraints, and difficulties that India will face in the future in terms of solid waste management and the role of models for such a system are discussed.

A Study on Variation of Landfill Gases in Completed Refuse Landfill Site after the Stabilization (사용종료 매립지의 지반안정화 후 매립가스의 변화)

  • Lee, Min-Hee;Ju, So-Young;Park, Jun-Kyu;Yeon, Ik-Jun;Kim, Kwang-Yul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.1
    • /
    • pp.27-34
    • /
    • 2004
  • The reclaimed waste layer in a completed refuse small landfill site was stabilized by JSP(Jumbo Special Pattern System) method. There were some variations of landfill gases(LFGs) after the stabilization. This study investigated the landfill gases emitted from a open dumping landfill site. We measured concentration of landfill gases before and after the construction, and 28 months later. As a result, the concentrations of $H_2S$ and $NH_3$ gases before the construction were 123.51ppm and 171.54ppm, respectively. These values were higher than TWA(Time Weighted Average) values. But the concentrations of $H_2S$ and $NH_3$ gases after the construction were 55.59ppm and 20.51ppm, and they also decreased 9.04ppm and 11.82ppm in 28 months. $CH_4$ and other landfill gases after the construction were little or a little detected in the landfill site. Hence we found out that concentrations or classes of landfill gases causing some problems extremely decreased by way of the stabilization.

  • PDF