• Title/Summary/Keyword: Open Data Utilization

Search Result 229, Processing Time 0.028 seconds

Analysis of Factors Affecting on the Freight Rate of Container Carriers (컨테이너 운임에 미치는 영향요인 분석)

  • Ahn, Young-Gyun;Ko, Byoung-Wook
    • Korea Trade Review
    • /
    • v.43 no.5
    • /
    • pp.159-177
    • /
    • 2018
  • The container shipping sector is an important international logistics operation that connects open economies. Freight rates rapidly change as the market fluctuates, and staff related to the shipping market are interested in factors that determine freight rates in the container market. This study uses the Vector Error Correction Model(VECM) to estimate the impact of factors affecting container freight rates. This study uses data published by Clarksons. The analysis results show a 4.2% increase in freight rates when world container traffic increases at 1.0%, a 4.0% decrease in freight rates when volume of container carriers increases by 1.0%, a 0.07% increase in freight rates when bunker price increases by 1.0%, and a 0.04% increase in freight rates accompanying 1.0% increase in libor interests rates. In addition, if the current freight rate is 1.0% higher than the long-term equilibrium rate, the freight rate will be reduced by 3.2% in the subsequent term. In addition, if the current freight rate is 1.0% lower than the long-term equilibrium rate, the freight rate will decrease by 0.12% in the following term. However, the adjusting power in a period of recession is not statistically significant which means that the pressure of freight rate increase in this case is neglectable. This research is expected to contribute to the utilization of scientific methods in forecasting container freight rates.

Feasibility of Deep Learning Algorithms for Binary Classification Problems (이진 분류문제에서의 딥러닝 알고리즘의 활용 가능성 평가)

  • Kim, Kitae;Lee, Bomi;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.95-108
    • /
    • 2017
  • Recently, AlphaGo which is Bakuk (Go) artificial intelligence program by Google DeepMind, had a huge victory against Lee Sedol. Many people thought that machines would not be able to win a man in Go games because the number of paths to make a one move is more than the number of atoms in the universe unlike chess, but the result was the opposite to what people predicted. After the match, artificial intelligence technology was focused as a core technology of the fourth industrial revolution and attracted attentions from various application domains. Especially, deep learning technique have been attracted as a core artificial intelligence technology used in the AlphaGo algorithm. The deep learning technique is already being applied to many problems. Especially, it shows good performance in image recognition field. In addition, it shows good performance in high dimensional data area such as voice, image and natural language, which was difficult to get good performance using existing machine learning techniques. However, in contrast, it is difficult to find deep leaning researches on traditional business data and structured data analysis. In this study, we tried to find out whether the deep learning techniques have been studied so far can be used not only for the recognition of high dimensional data but also for the binary classification problem of traditional business data analysis such as customer churn analysis, marketing response prediction, and default prediction. And we compare the performance of the deep learning techniques with that of traditional artificial neural network models. The experimental data in the paper is the telemarketing response data of a bank in Portugal. It has input variables such as age, occupation, loan status, and the number of previous telemarketing and has a binary target variable that records whether the customer intends to open an account or not. In this study, to evaluate the possibility of utilization of deep learning algorithms and techniques in binary classification problem, we compared the performance of various models using CNN, LSTM algorithm and dropout, which are widely used algorithms and techniques in deep learning, with that of MLP models which is a traditional artificial neural network model. However, since all the network design alternatives can not be tested due to the nature of the artificial neural network, the experiment was conducted based on restricted settings on the number of hidden layers, the number of neurons in the hidden layer, the number of output data (filters), and the application conditions of the dropout technique. The F1 Score was used to evaluate the performance of models to show how well the models work to classify the interesting class instead of the overall accuracy. The detail methods for applying each deep learning technique in the experiment is as follows. The CNN algorithm is a method that reads adjacent values from a specific value and recognizes the features, but it does not matter how close the distance of each business data field is because each field is usually independent. In this experiment, we set the filter size of the CNN algorithm as the number of fields to learn the whole characteristics of the data at once, and added a hidden layer to make decision based on the additional features. For the model having two LSTM layers, the input direction of the second layer is put in reversed position with first layer in order to reduce the influence from the position of each field. In the case of the dropout technique, we set the neurons to disappear with a probability of 0.5 for each hidden layer. The experimental results show that the predicted model with the highest F1 score was the CNN model using the dropout technique, and the next best model was the MLP model with two hidden layers using the dropout technique. In this study, we were able to get some findings as the experiment had proceeded. First, models using dropout techniques have a slightly more conservative prediction than those without dropout techniques, and it generally shows better performance in classification. Second, CNN models show better classification performance than MLP models. This is interesting because it has shown good performance in binary classification problems which it rarely have been applied to, as well as in the fields where it's effectiveness has been proven. Third, the LSTM algorithm seems to be unsuitable for binary classification problems because the training time is too long compared to the performance improvement. From these results, we can confirm that some of the deep learning algorithms can be applied to solve business binary classification problems.

A Study of Family Caregiver's Burden for the Terminally III Patients (지역사회 말기질환자 가족 부담감에 관한 연구)

  • Han, Sung-Suk;Ro, You-Ja;Yang, Soo;Yoo, Yang-Sook;Kim, Sek-Il;Hwang, Hee-Hyung
    • Journal of Home Health Care Nursing
    • /
    • v.10 no.1
    • /
    • pp.58-72
    • /
    • 2003
  • The purpose of this study was to describe the perceived burden of the terminally III patients's caregiver and to analyze relationship between the perceived burden and the various demographics, illness characteristics, family relationships, and economic factor of the family & patients. The sample of 132 caregivers who care for the terminally III patients Kyung-Gi province, Seoul, Korea. The period of this study was from August to September, 2002. The perceived burden of the family caregiver was measured by the burden scale(20 items, 4 point scale) developed by Montgomery et al. (1985). The Data was analyzed using SAS-program by t-test and ANOVA. The results were as follows; 1. The mean of the family caregiver's burden score was 3.02. The score showed that caregivers perceive severe the level of burden. The hight items of the family caregiver's burden were' I feel it is painful to watch patient's diseases'(3.77). 'I feel afraid for what the future holds for my patients'(3.66), 'I feel it reduced to amount of privacy time'(3.64). 2. The caregiver's burden was significantly related to patient's gender(F=3.17, p= 0.0020), patient's job(F=2.49, p=0.0476), caregiver's age(F=4.29, p=0.0030), and caregiver's job(F=2.49, p=0.0476). 3. The caregiver's burden according to illness characteristics showed no significant difference. 4. The caregiver's burden was significantly associated with patient's family relationship (F=4.05, p=0.0041), patient's care mean period in a day(F=47.18,

  • PDF

Comparison of Deep Learning Frameworks: About Theano, Tensorflow, and Cognitive Toolkit (딥러닝 프레임워크의 비교: 티아노, 텐서플로, CNTK를 중심으로)

  • Chung, Yeojin;Ahn, SungMahn;Yang, Jiheon;Lee, Jaejoon
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.1-17
    • /
    • 2017
  • The deep learning framework is software designed to help develop deep learning models. Some of its important functions include "automatic differentiation" and "utilization of GPU". The list of popular deep learning framework includes Caffe (BVLC) and Theano (University of Montreal). And recently, Microsoft's deep learning framework, Microsoft Cognitive Toolkit, was released as open-source license, following Google's Tensorflow a year earlier. The early deep learning frameworks have been developed mainly for research at universities. Beginning with the inception of Tensorflow, however, it seems that companies such as Microsoft and Facebook have started to join the competition of framework development. Given the trend, Google and other companies are expected to continue investing in the deep learning framework to bring forward the initiative in the artificial intelligence business. From this point of view, we think it is a good time to compare some of deep learning frameworks. So we compare three deep learning frameworks which can be used as a Python library. Those are Google's Tensorflow, Microsoft's CNTK, and Theano which is sort of a predecessor of the preceding two. The most common and important function of deep learning frameworks is the ability to perform automatic differentiation. Basically all the mathematical expressions of deep learning models can be represented as computational graphs, which consist of nodes and edges. Partial derivatives on each edge of a computational graph can then be obtained. With the partial derivatives, we can let software compute differentiation of any node with respect to any variable by utilizing chain rule of Calculus. First of all, the convenience of coding is in the order of CNTK, Tensorflow, and Theano. The criterion is simply based on the lengths of the codes and the learning curve and the ease of coding are not the main concern. According to the criteria, Theano was the most difficult to implement with, and CNTK and Tensorflow were somewhat easier. With Tensorflow, we need to define weight variables and biases explicitly. The reason that CNTK and Tensorflow are easier to implement with is that those frameworks provide us with more abstraction than Theano. We, however, need to mention that low-level coding is not always bad. It gives us flexibility of coding. With the low-level coding such as in Theano, we can implement and test any new deep learning models or any new search methods that we can think of. The assessment of the execution speed of each framework is that there is not meaningful difference. According to the experiment, execution speeds of Theano and Tensorflow are very similar, although the experiment was limited to a CNN model. In the case of CNTK, the experimental environment was not maintained as the same. The code written in CNTK has to be run in PC environment without GPU where codes execute as much as 50 times slower than with GPU. But we concluded that the difference of execution speed was within the range of variation caused by the different hardware setup. In this study, we compared three types of deep learning framework: Theano, Tensorflow, and CNTK. According to Wikipedia, there are 12 available deep learning frameworks. And 15 different attributes differentiate each framework. Some of the important attributes would include interface language (Python, C ++, Java, etc.) and the availability of libraries on various deep learning models such as CNN, RNN, DBN, and etc. And if a user implements a large scale deep learning model, it will also be important to support multiple GPU or multiple servers. Also, if you are learning the deep learning model, it would also be important if there are enough examples and references.

Effectiveness of Internet-based Interventions on HbA1c Levels in Adult Patients with Diabetes: A Meta-Analysis of Randomized Controlled Trials (인터넷 기반 중재프로그램을 통한 성인 당뇨 환자의 HbA1c 중재효과: 메타분석)

  • Jung, Chang Suk;Noh, Hyun Jung;Gu, Min Jeong;Kim, Yi Young;Lee, Soon Young
    • Journal of health informatics and statistics
    • /
    • v.43 no.4
    • /
    • pp.307-317
    • /
    • 2018
  • Objectives: This study aimed to verify the effectiveness of Internet-based intervention programs for adults with diabetes by conducting a meta-analysis of studies conducted since 2000. Methods: We conducted a systematic review of research papers published in domestic and overseas journals from January 2000 to December 2015, and selected 9 papers that met the analysis criteria. Data analysis was performed using the open source statistical software R 3.5.0, to analyze the effectiveness of Internet-based interventions on experimental and control groups. Results: The analysis showed that intervention programs for controlling HbA1c levels in adult patients with diabetes most commonly comprised 7 sessions on Internet-based management (77.8%), and the most common frequency of application of intervention programs was 4 session in 6 months (33.4%). The present meta-analysis revealed statistically significant effects of Internet-based intervention activities (SMD = 0.92, 95% CI 0.45-1.40). The analysis of the effect size according to the intervention period showed that the 3-month, 6-month, and 12-month interventions reported in eight studies (89%) had a high effect on the Internet-based intervention group. Conclusions: The results of this study confirm the effectiveness of Internet-based intervention programs for adult patients with diabetes. The need for research on the utilization of Internet-based intervention programs for the steady management of diabetes, a chronic disease; for the development of specific guidelines for intervention activities; and for establishing appropriate protocols are acknowledged.

Use of ChatGPT in college mathematics education (대학수학교육에서의 챗GPT 활용과 사례)

  • Sang-Gu Lee;Doyoung Park;Jae Yoon Lee;Dong Sun Lim;Jae Hwa Lee
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.123-138
    • /
    • 2024
  • This study described the utilization of ChatGPT in teaching and students' learning processes for the course "Introductory Mathematics for Artificial Intelligence (Math4AI)" at 'S' University. We developed a customized ChatGPT and presented a learning model in which students supplement their knowledge of the topic at hand by utilizing this model. More specifically, first, students learn the concepts and questions of the course textbook by themselves. Then, for any question they are unsure of, students may submit any questions (keywords or open problem numbers from the textbook) to our own ChatGPT at https://math4ai.solgitmath.com/ to get help. Notably, we optimized ChatGPT and minimized inaccurate information by fully utilizing various types of data related to the subject, such as textbooks, labs, discussion records, and codes at http://matrix.skku.ac.kr/Math4AI-ChatGPT/. In this model, when students have questions while studying the textbook by themselves, they can ask mathematical concepts, keywords, theorems, examples, and problems in natural language through the ChatGPT interface. Our customized ChatGPT then provides the relevant terms, concepts, and sample answers based on previous students' discussions and/or samples of Python or R code that have been used in the discussion. Furthermore, by providing students with real-time, optimized advice based on their level, we can provide personalized education not only for the Math4AI course, but also for any other courses in college math education. The present study, which incorporates our ChatGPT model into the teaching and learning process in the course, shows promising applicability of AI technology to other college math courses (for instance, calculus, linear algebra, discrete mathematics, engineering mathematics, and basic statistics) and in K-12 math education as well as the Lifespan Learning and Continuing Education.

Effects of Customers' Relationship Networks on Organizational Performance: Focusing on Facebook Fan Page (고객 간 관계 네트워크가 조직성과에 미치는 영향: 페이스북 기업 팬페이지를 중심으로)

  • Jeon, Su-Hyeon;Kwahk, Kee-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.57-79
    • /
    • 2016
  • It is a rising trend that the number of users using one of the social media channels, the Social Network Service, so called the SNS, is getting increased. As per to this social trend, more companies have interest in this networking platform and start to invest their funds in it. It has received much attention as a tool spreading and expanding the message that a company wants to deliver to its customers and has been recognized as an important channel in terms of the relationship marketing with them. The environment of media that is radically changing these days makes possible for companies to approach their customers in various ways. Particularly, the social network service, which has been developed rapidly, provides the environment that customers can freely talk about products. For companies, it also works as a channel that gives customized information to customers. To succeed in the online environment, companies need to not only build the relationship between companies and customers but focus on the relationship between customers as well. In response to the online environment with the continuous development of technology, companies have tirelessly made the novel marketing strategy. Especially, as the one-to-one marketing to customers become available, it is more important for companies to maintain the relationship marketing with their customers. Among many SNS, Facebook, which many companies use as a communication channel, provides a fan page service for each company that supports its business. Facebook fan page is the platform that the event, information and announcement can be shared with customers using texts, videos, and pictures. Companies open their own fan pages in order to inform their companies and businesses. Such page functions as the websites of companies and has a characteristic of their brand communities such as blogs as well. As Facebook has become the major communication medium with customers, companies recognize its importance as the effective marketing channel, but they still need to investigate their business performances by using Facebook. Although there are infinite potentials in Facebook fan page that even has a function as a community between users, which other platforms do not, it is incomplete to regard companies' Facebook fan pages as communities and analyze them. In this study, it explores the relationship among customers through the network of the Facebook fan page users. The previous studies on a company's Facebook fan page were focused on finding out the effective operational direction by analyzing the use state of the company. However, in this study, it draws out the structural variable of the network, which customer committment can be measured by applying the social network analysis methodology and investigates the influence of the structural characteristics of network on the business performance of companies in an empirical way. Through each company's Facebook fan page, the network of users who engaged in the communication with each company is exploited and it is the one-mode undirected binary network that respectively regards users and the relationship of them in terms of their marketing activities as the node and link. In this network, it draws out the structural variable of network that can explain the customer commitment, who pressed "like," made comments and shared the Facebook marketing message, of each company by calculating density, global clustering coefficient, mean geodesic distance, diameter. By exploiting companies' historical performance such as net income and Tobin's Q indicator as the result variables, this study investigates influence on companies' business performances. For this purpose, it collects the network data on the subjects of 54 companies among KOSPI-listed companies, which have posted more than 100 articles on their Facebook fan pages during the data collection period. Then it draws out the network indicator of each company. The indicator related to companies' performances is calculated, based on the posted value on DART website of the Financial Supervisory Service. From the academic perspective, this study suggests a new approach through the social network analysis methodology to researchers who attempt to study the business-purpose utilization of the social media channel. From the practical perspective, this study proposes the more substantive marketing performance measurements to companies performing marketing activities through the social media and it is expected that it will bring a foundation of establishing smart business strategies by using the network indicators.

The Characteristics and Performances of Manufacturing SMEs that Utilize Public Information Support Infrastructure (공공 정보지원 인프라 활용한 제조 중소기업의 특징과 성과에 관한 연구)

  • Kim, Keun-Hwan;Kwon, Taehoon;Jun, Seung-pyo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.1-33
    • /
    • 2019
  • The small and medium sized enterprises (hereinafter SMEs) are already at a competitive disadvantaged when compared to large companies with more abundant resources. Manufacturing SMEs not only need a lot of information needed for new product development for sustainable growth and survival, but also seek networking to overcome the limitations of resources, but they are faced with limitations due to their size limitations. In a new era in which connectivity increases the complexity and uncertainty of the business environment, SMEs are increasingly urged to find information and solve networking problems. In order to solve these problems, the government funded research institutes plays an important role and duty to solve the information asymmetry problem of SMEs. The purpose of this study is to identify the differentiating characteristics of SMEs that utilize the public information support infrastructure provided by SMEs to enhance the innovation capacity of SMEs, and how they contribute to corporate performance. We argue that we need an infrastructure for providing information support to SMEs as part of this effort to strengthen of the role of government funded institutions; in this study, we specifically identify the target of such a policy and furthermore empirically demonstrate the effects of such policy-based efforts. Our goal is to help establish the strategies for building the information supporting infrastructure. To achieve this purpose, we first classified the characteristics of SMEs that have been found to utilize the information supporting infrastructure provided by government funded institutions. This allows us to verify whether selection bias appears in the analyzed group, which helps us clarify the interpretative limits of our study results. Next, we performed mediator and moderator effect analysis for multiple variables to analyze the process through which the use of information supporting infrastructure led to an improvement in external networking capabilities and resulted in enhancing product competitiveness. This analysis helps identify the key factors we should focus on when offering indirect support to SMEs through the information supporting infrastructure, which in turn helps us more efficiently manage research related to SME supporting policies implemented by government funded institutions. The results of this study showed the following. First, SMEs that used the information supporting infrastructure were found to have a significant difference in size in comparison to domestic R&D SMEs, but on the other hand, there was no significant difference in the cluster analysis that considered various variables. Based on these findings, we confirmed that SMEs that use the information supporting infrastructure are superior in size, and had a relatively higher distribution of companies that transact to a greater degree with large companies, when compared to the SMEs composing the general group of SMEs. Also, we found that companies that already receive support from the information infrastructure have a high concentration of companies that need collaboration with government funded institution. Secondly, among the SMEs that use the information supporting infrastructure, we found that increasing external networking capabilities contributed to enhancing product competitiveness, and while this was no the effect of direct assistance, we also found that indirect contributions were made by increasing the open marketing capabilities: in other words, this was the result of an indirect-only mediator effect. Also, the number of times the company received additional support in this process through mentoring related to information utilization was found to have a mediated moderator effect on improving external networking capabilities and in turn strengthening product competitiveness. The results of this study provide several insights that will help establish policies. KISTI's information support infrastructure may lead to the conclusion that marketing is already well underway, but it intentionally supports groups that enable to achieve good performance. As a result, the government should provide clear priorities whether to support the companies in the underdevelopment or to aid better performance. Through our research, we have identified how public information infrastructure contributes to product competitiveness. Here, we can draw some policy implications. First, the public information support infrastructure should have the capability to enhance the ability to interact with or to find the expert that provides required information. Second, if the utilization of public information support (online) infrastructure is effective, it is not necessary to continuously provide informational mentoring, which is a parallel offline support. Rather, offline support such as mentoring should be used as an appropriate device for abnormal symptom monitoring. Third, it is required that SMEs should improve their ability to utilize, because the effect of enhancing networking capacity through public information support infrastructure and enhancing product competitiveness through such infrastructure appears in most types of companies rather than in specific SMEs.

A Study on Rationalization of National Forest Management in Korea (국유림경영(國有林經營)의 합리화(合理化)에 관(關)한 연구(硏究))

  • Choi, Kyu-Ryun
    • Journal of Korean Society of Forest Science
    • /
    • v.20 no.1
    • /
    • pp.1-44
    • /
    • 1973
  • Needless to say, the management of national forest in all countries is very important in view of the national mission and management purposes. Korean national forest is also in particular significant in promoting national economy for the continuous increasing of the demand for wood, conservation of the land and social welfare. But there's no denying the fact that the leading aim of the Korean forest policy has been based upon the conservation of forest resources and recovery of land conservation function instead of improvement of the forest productive capacity. Therefore, the management of national forest should be aimed as an industry in the chain of the Korean national economy. And the increment of the forest productive capacity based on rationalized forest management is also urgently needed. Not only the increment of the timber production but also the establishment of the good forest in quality and quantity are to bring naturally many functions of conservation and other public benefits. In 1908 Korean national forest was historically established for the first time as a result of the notification for ownership, and was divided into two kinds in 1911-1924, such as indisposable national forest for land conservation, forest management, scientific research and public welfare, and the other national forest to be disposed. Indisposable forest is mostly under the jurisdiction of national forest stations (Chungbu, Tongbu, Nambu), and the tother national forests are under custody of respective cities and provinces, and under custody of the other government authorities. As of the end of 1971, national forest land is 19.5% (1,297,708 ha) of the total forest land area, but growing stock is 50.1% ($35,406,079m^3$) of the total forest growing stock, and timber production of national forest is 23.6% ($205,959m^3$) of the year production of total timber in Korea. Accordingly, it is the important fact that national forest occupies the major part of Korean forestry. The author positively affirms that success or failure of the management of national forest controls rise or fall of forestry in Korea. All functions of forest are very important, but among others the function of timber production is most important especially in Korea, that unavoidably imports a large quantity of foreign wood every year (in 1971 import of foreign wood-$3,756,000m^3$, 160,995,000 dollars). So, Korea urgently needs the improvement of forest productive capacity in national forest. But it is difficult that wood production meets the rapid increase of demand for wood to the development of economy, because production term of forestry is long, so national forest management should be rationalized by the effective investment and development of forestry techniques in the long view. Although Korean national forest business has many difficulties in the budget, techniques and the lack of labour due to outflow of rural village labour by development of national economy, and the increase of labour wages and administrative expenses etc. the development of national forest depends on adoption of the suitable forest techniques and management adapted for social and economical development. In this view point the writer has investigated and analyzed the status of the management of national forest in Korea to examine the irrational problems and suggest an improvement plan. The national forestry statistics cited in this study is based on the basic statistics and the statistics of the forest business as of the end of 1971 published by Office of Forestry, Republic of Korea, and the other depended on the data presented by the national forest stations. The writer wants to propose as follows (seemed to be helpful in improvement of Korean national forest management). 1) In the organization of national forest management, more national forest stations should be established to manage intensively, and the staff of working plan officials should be strengthened because of the importance of working plan. 2) By increasing the staff of protection officials, forest area assigned for each protection official should be decreased to 1,000-2,000 ha. 3) The frequent personnel changes of supervisor of national forest station(the responsible person on-the-spot) obstructs to accomplish the consistent management plan. 4) In the working plan drafting for national forest, basic investigations should be carefully practiced with sufficient expenditure and staff not to draft unreal working plan. 5) The area of working-unit should be decreased to less than 2,000 ha on the average for intensive management and the principle of a working-unit in a forest station should be realized as soon as possible. 6) Reforestation on open land should be completed in a short time with a debt of the special fund(a long term loan), and the land on which growing hardwood stands should be changed with conifers to increase productivity per unit area, and at the same time techical utilization method of hardwood should be developed. 7) Expenses of reforestation should be saved by mechanization and use of chemicals for reforestation and tree nursery operation providing against the lack of labour in future. 8) In forest protection, forest fire damage is enormous in comparison with foreign countries, accordingly prevention system and equipment should be improved, and also the minimum necessary budget should be counted up for establishment and manintenance of fire-lines. 9) Manufacture production should be enlarged to systematize protection, processing and circulation of forest business, and, by doing this, mich benefit is naturally given for rural people. 10) Establishment and arrangement of forest road networks and erosion control work are indispensable for the future development of national forest itself and local development. Therefore, these works should be promoted by the responsibility of general accounting instead of special accounting. 11) Mechanization of forest works should be realized for exploiting hinterlands to meet the demand for timber increased and for solving lack of labour, consequently it should promote import of forest machines, home production, training for operaters and careful adminitration. 12) Situation of labour in future will grow worse. Therefore, the countermeasure to maintain forest labourers and pay attention to public welfare facilities and works should be considered. 13) Although the condition of income and expenditure grows worse because of economical change, the regular expenditure should be fixed. So part of the surplus fund, as of the end of 1971, should be established for the fund, and used for enlarging reforestation and forest road networks(preceding investment in national forest).

  • PDF