• Title/Summary/Keyword: Open Architecture CNC

Search Result 29, Processing Time 0.024 seconds

Development and Evaluation of Ultra High-Speed Tapping Machine (초고속 태핑머신 개발 및 평가)

  • 김선호;김동훈;김선민;이돈진;이선규;안중환;이상규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.221-227
    • /
    • 2002
  • Tapping is a machining process that makes a female screw on parts to be assembly together. Recently, as the number of small and compact products increases the radius of tap as small as 1 mm is not unusual and more accurate tapping is needed. In complying with those needs, some high-speed tapping machines with synchronizing function have been developed. This paper describes the development of an ultra high-speed tapping machine up to 10,000rpm. The key factors in the tapping speed are the acceleration/deceleration and the synchronizing errors between spindle motor and fred motor. To minimize the acceleration/deceleration time, a low inertia spindle with a synchronous built-in servo motor was developed. To minimize the synchronizing errors, the tapping cycle algorithm was optimized on an open architecture CNC. The developed tapping machine has the acceleration/deceleration time of 0.13sec/10,000rpm for rigid tapping and the synchronizing error below 4.4%. The cycle time for tapping a female screw of M3 and depth 2 times diameter was 0.55sec.

Development of High Speed/Intelligent Machining System by PLUG/PLAY Method (PLUG/PLAY 방식 고속 지능형 가공 시스템의 연구)

  • 윤원수;김찬봉;권용찬;한기상;양희구;김세광;김주한;박종권
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.483-488
    • /
    • 2000
  • This study aims at developing the high speed/intelligent machining system using the plug/play method of an open architecture controller. The plug/play technology by the application Specific Function (ASF), can readily implement the open architecture controller into various machining system or other automatic devices. The plug/play method integrates the ASF, visual builder, controller OS technology. This study, as an example, presents a schematic diagram for integration of an open architecture CNC and individual component technology for the high speed/intelligent machining system.

  • PDF

Model of Remote Service and Fault Diagnosis for CNC Machine Tool (공작기계의 지능형 고장진단 및 원격 서비스 모델)

  • 김선호;김동훈;이은애;한기상;김주한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.92-97
    • /
    • 2001
  • The major faults of CNC machine tool is operational error which is charge over 70%. This paper describes model of remote service and fault diagnosis for CNC machine tool with open architecture controller. For intelligent fault diagnosis, new model is proposed. In this paper, the three major operational faults, emergency stop error, cycle start disable and machine ready disable, are defined. Two diagnostic models based on the ladder diagram, switching function model, step switching function model, are proposed. For internet based remote service, suitable environment is proposed and implemented with web server and client.

  • PDF

PC Based STEP-NC Milling Machine Operated by STEP-NC in XML Format (XML형식의 STEP-NC파일로 구동되는 PC 기반의 STEP-NC milling machine)

  • 이원석;방영봉
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.185-193
    • /
    • 2002
  • Most of NC machines are operated by Is06983 standard called G-code, which was developed in the early days of machine tools. This G-code limits hardware performance of the currently developed high-performance hardware & machine tools. By describing only movements of tool, almost all of information of previous production departments is lost, and the machining department cannot exchange information with other departments. For adjusting new hardware environment and direct communication of CNC machines with CAD/CAM software, ISO 14649, STEP -NC is researched. This new standard stores CAD/CAM information as well as operation commands of CNC machines. In this research, the new CNC machine operated by STEP-NC was built and tested. Unlike other STEP-NC milling machines, this system uses the STEP-NC file in form of XML as data input. It makes possible for STEP-NC machines to exchange information to other databases using XML. The mentioned system of this paper loads the XML file, analyzes it, makes tool paths of two5D features with information of STEP-NC, and machines automatically without making G-code. All of software is programmed with Visual C++, and the milling machine is made with table milling machine, step motors, and motion control board for PC that can be directly controlled by C++ commands. All modules of software and hardware were independent, it allows convenient for substitution and expansion of the milling machine. The example 1 in ISP14649-11 that had all information about geometry and machining and the example 2 that has only geometry and tool information were used to test automatic machining by the open-architecture milling machine.

A Study on the NURBS Interpolator for the Precision Control of Wire-EDM (와이어컷 방전가공기의 정밀제어를 위한 NURBS 보간기에 관한 연구)

  • 박진호;남성호;정태성;양민양
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.143-151
    • /
    • 2004
  • This paper deals with the precision NURBS interpolator for wire-EDM. Previous research about OAC (Open Architecture Controller) is mostly aimed at NC cutting machines such as milling or lathes, and hence these results are inadequate to apply to wire-EDM. In contradiction to NC machines, wire-EDM operates relatively slow feed rates and based on a feedback control loop to the machining process. The 2-stage interpolation method which reflects wire-EDM specific characteristics was proposed. The constant interpolation error could be acquired through 1 st stage interpolation. Feed rate regulation was performed through 2nd stage interpolation. The suggested algorithm was implemented to test-bed PC-NC system. Computer simulations and the experimental machining were conducted.

Model of Remote Service and Intelligent Fault Diagnosis for CNC Machine Tool (공작기계의 지능형 고장진단과 원격 서비스 모델)

  • Kim, Sun-Ho;Kim, Dong-Hoon;Han, Gi-Sang;Kim, Chan-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.168-178
    • /
    • 2002
  • The CNC machine toots has two kinds of fault. One is the fault due to degraded parts and the other is the fault due to operation disability. The phenomena of degradation is predictable but the operational fault is unpredictable because it occurred without any warning. The major faults of CNC machine tool are operational faults which are charged over 70%. This paper describes the model of remote service and the intelligent fault diagnosis system to diagnosis operational faults of CNC machine tools. To generalize fault diagnosis, two diagnosis models such as SF(Switching Function) and SSF(Step Switching Function) are proposed. The SF is static model and SSF is dynamic model for expression of fault. The SF and SSF model can be generated using SFG(Switching Function Generator) which is developed in this research. The three major operational faults such as emergency stop error, cycle start disability and machine ready disability are applied to experiment of fault modeling. To remote service of faults fur CNC machine tool, the web server and client system based internet are proposed as the suitable environment. The developed two technologies are implemented with the internal function of open architecture controller. The implemental results for two technologies are presented to validate the proposed scheme.

Non-Causal Filter의 PC-NC에의 응용

  • 장현상;최종률
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1039-1042
    • /
    • 1995
  • In real time application such as motion control, it is hard to find the application of non-causal filtering due to its need for future position data, even though it shows wide usage in off-line digital signal processing. Recently, some of motion control areas such as learning and repetitive control use non-causal filtering technique in their application. these kinds of zero-lag non-causal filter application are very usful not only to reduce the machine vibration, but also to increase control accuracy with comparatively less work. In this paper, genuine method to implement zero-lag non-causal filter in a CNC is introduced. Also the variation of this implementation for the learning operation is suggested to give the NC better control performance for a specific job. By adopting the new NC architecture call Soft-NC, all these implementions are made possible here, and especially large memory requirement which hinders their usage for many years is no longer barrier in their real world application.

  • PDF

Development of ISO14649 Compliant CNC Milling Machine Operated by STEP-NC in XML Format

    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.5
    • /
    • pp.27-33
    • /
    • 2003
  • G-code, another name of ISO6983, has been a popular commanding language for operating machine tools. This G-code, however, limits the usage of today's fast evolving high-performance hardware. For intelligent machines, the communications between machine and CAD/CAM departments become important, but the loss of information during generating G-code makes the production department isolated. The new standard for operating machine tools, named STEP-NC is just about to be standardized as ISO14649. As this new standard stores CAD/CAM information as well as operation commands of CNC machines, and this characteristic makes this machine able to exchange information with other departments. In this research, the new CNC machine operated by STEP-NC was built and tested. Unlike other prototypes of STEP-NC milling machines, this system uses the STEP-NC file in XML file form as data input. This machine loads information from XML file and deals with XML file structure. It is possible for this machine to exchange information to other databases using XML. The STEP-NC milling machines in this research loads information from the XML file, makes tool paths for two5D features with information of STEP-NC, and machines automatically without making G-code. All software is programmed with Visual $C^{++}$, and the milling machine is built with table milling machine, step motors, and motion control board for PC that can be directly controlled by Visual $C^{++}$ commands. All software and hardware modules are independent from each other; it allows convenient substitution and expansion of the milling machine. Example 1 in ISO14649-11 having the full geometry and machining information and example 2 having only the geometry and tool information were used to test the automatic machining capability of this system.

Development of Manufacturing System Package for CFRP Machining (패키지형 탄소섬유복합재 가공시스템 개발)

  • Kim, Hyo-Young;Kim, Tae-Gon;Lee, Seok-Woo;Yoon, Han-Sol;Kyung, Dae-Su;Choi, In-Hue;Choi, Hyun;Ko, Jong-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.6
    • /
    • pp.431-438
    • /
    • 2016
  • Recently, concerns about the environment are becoming more important because of global warming and the exhaustion of earth's resources. In the aviation and automobile industries, the application of light materials is increasingly important for eco-friendly and effective. Carbon Fiber Reinforced Plastics is a composite material which great formability and the high strength of carbon fiber. CFRP, which is both light and strong, is hard to manufacture. In addition, CFRP machining has a high chance of defects. This research discusses the development of a manufacturing system package for CFRP machining. It involving CFRP Drilling/Water-jet Manufacturing Machines, Inspection/Post-processing Systems, CNC platform for an EtherCAT servo Communication, Flexible Manufacturing Systems and CFRP machining Processes.