An x-ray PIV (Particle Image Velocimetry) technique was developed fur measuring quantitative information on flows inside opaque conduits and/or opaque-fluid flows. To check the performance of the x-ray PIV technique developed, it was applied to a liquid flow in an opaque Teflon tube. To acquire x-ray images suitable for PIV velocity field measurements, the refraction-based edge enhancement mechanism was employed with seeding detectable tracer particles. The amassed velocity field data obtained were in a reasonable agreement with the theoretical prediction. The x-ray PIV technique was also applied to get velocity fields of blood flow and to measure size and velocity of micro-bubbles simultaneously, and to visualize the water refilling process in bamboo leaves. The x-ray PIV was found to be a powerful transmission-type flow imaging technique fur measuring quantitative information of flows inside opaque objects and various opaque-fluid flows.
To diagnose circulatory diseases in the viewpoint of hemodynamics, we need to get quantitative hemodynamic information of blood flows related with the vascular diseases with high spatial resolution of tens micrometer and high temporal resolution in the order of millisecond. For investigating in-vivo hemodynamic phenomena, a new diagnosing technique combining medical radiography and PIV method was newly proposed and developed. This angiographic PIV technique consists of a medical X-ray tube, an X-ray CCD camera, a shutter module for double pulses of X-ray, and a synchronizer. The feasibility of the angiographic PIV technique was tested and quantitative flow velocity field distribution of a flow inside an opaque conduit was acquired by the developed system. It can be used for measuring flow phenomena of nontransparent fluids inside opaque conduits.
The x-ray micro-imaging technique was employed to measure the size and velocity of micro-bubbles moving in an opaque tube simultaneously. Phase contrast images were obtained at interfaces of micro-bubbles between water and air due to different refractive index. Micro-bubbles of $20\~120{\mu}m$ diameter moving upward in an opaque tube $(\phi=2.7mm)$ were tested. For two different working fluids of tap water and DI water, the measured velocity of micro-bubbles is roughly proportional to the square of bubble size.
An x-ray PIV (Particle Image Velocimetry) technique was developed to measure quantitative information on flows inside opaque conduits and on opaque-fluid flows. At first, the developed x-ray PIV technique was applied to flow in an opaque Teflon tube. To acquire x-ray images suitable for PIV velocity field measurements, refraction-based edge enhancement mechanism was employed using detectable tracer particles. The optimal distance between with the sample and detector was experimentally determined. The resulting amassed velocity field data were in reasonable agreement with the theoretical prediction. The x-ray PIV technique was also applied to blood flow in a microchannel. The flow pattern of blood was visualifed by enhancing the diffraction/interference -bas ed characteristic s of blood cells on synchrotron x-rays without any contrast agent or tracer particles. That is, the flow-pattern image of blood was achieved by optimizing the sample (blood) to detector distance and the sample thickness. Quantitative velocity field information was obtained by applying PIV algorithm to the enhanced x-ray flow images. The measured velocity field data show a typical flow structure of flow in a macro-scale channel.
The microbubbles were used in various fields, such as turbulent control, drag reduction, material science and life science. The X-ray PTV using X-ray micro-imaging technique was employed to mea-sure the size and velocity of micro-bubbles moving in an opaque tube simultaneously. Micro-bubbles of $10{\sim}60{\mu}m$ diameter moving upward in an opaque tube (${\phi}$=2.7mm) were tested. Due to the different refractive indices of water and air, phase contrast X-ray images clearly show the exact size and shape of over-lapped microbubbles. In all of the working fluids tested (deionized water, tap water, 0.01 and 0.10M NaCl solutions), the measured terminal velocity of the microbubbles rising through the solution was proportional to the square of the bubble diameter. The rising velocity was increased with increasing mole concentration. The microbubble can be useful as contrast agent or tracer in life science and biology. The X-ray PTV technique should be able to extract useful information on the behavior of various bio/microscale fluid flows that are not amenable to analysis using conventional methods.
Imaging techniques using x-ray beam at high energies (>6KeV) such as contact radiography, projection microscopy, and tomography have been used to nondestructively discern internal structure of objects in material science, biology, and medicine. This paper introduces the x-ray micro-imaging method using 1B2 micro-probe line of PAL (Pohang Accelerator Laboratory). Cross-sectional information on low electron density materials can be obtained by probing a sample with coherent synchrotron x-ray beam in an in-line holography setup. Living organism such as plants, insects are practically transparent to high energy x-rays and create phase shift images of x-ray wave front. X-ray micro-images of micro-bubbles of $20\~120\;{\mu}m$ diameter in an opaque tube were recorded. Clear phase contrast images were obtained at Interfaces between bubbles and surrounding liquid due to different decrements of refractive index.
It is important to measure precisely the size and velocity of micro-bubbles used in various field. The synchrotron X-ray micro-imaging technique was employed to measure the size and velocity of micro-bubbles moving in an opaque tube simultaneously. Phase contrast images were obtained at interfaces of micro-bubbles between water and air due to their different refractive indices. The X-ray micro-imaging technique was found to measure an optical fiber with an accuracy of 0.2%. Micro-bubbles of 20∼60$\mu\textrm{m}$ diameter moving upward in an opaque tube (${\Phi}$=2.7mm) were tested to measure bubble size and up-rising velocity. For DI water, the measured velocity of micro-bubbles is nearly proportional to the square of bubble size, agreed well with the theoretical result. In addition, the synchrotron X-ray micro-imaging technique can measure accurately the size and velocity of several overlapped micro-bubbles.
It is important to measure precisely the size and velocity of micro-bubbles used in various field. The synchrotron X-ray micro-imaging technique was employed to measure the size and velocity of micro-bubbles moving in an opaque tube simultaneously. Phase contrast images were obtained at interfaces of micro-bubbles between water and air due to their different refractive indices. The X-ray micro-imaging technique was found to measure an optical fiber with an accuracy of 0.2%. Micro-bubbles of $10{\sim}60{\mu}m$ diameter moving upward in an opaque tube (${\phi}=2.7mm$) were tested to measure bubble size and up-rising velocity. For DI water, the measured velocity of micro-bubbles is nearly proportional to the square of bubble size, agreed well with the theoretical result. In addition, the synchrotron X-ray micro-imaging technique can measure accurately the size and velocity of several overlapped micro-bubbles.
본 연구는 Brain CT검사 시 영상에서 발생하는 선속경화현상의 원인과 감소방법을 알아보기 위하여 선속경화현상에 영향을 미치는 관전압, 관전류, 단면두께, 갠트리 각도, 기준선에 변화를 주었다. 사용한 장비로는 Somatom Sensation 16장비로 Bone opaque head phantom을 이용 영상영향인자에 변화를 주어 스캔하였고 획득한 영상 데이터를 이용하여, CT값 분석을 이용한 정량적 분석과 CT영상평가표를 이용한 정성적 평가를 시행하였다. 정량적 분석결과 관전압은 140kVp일 때 $31.56{\pm}2.89HU$로 측정되었고, 관전류의 경우 150mA에서 $-3.87{\pm}0.12HU$, 절편두께는 3mm에서 $2.29{\pm}0.78HU$로 측정되었으며 갠트리 각도에서 IOML이 $13.31{\pm}1.03HU$로 선속경화현상이 가장 적었다. 정성적 분석결과 대부분의 평가자들이 140kVp, 150mA, 3mm, IOML 또는 OML에서 스캔한 영상을 선속경화현상이 적게 발생한 영상으로 평가하였으며 모든 조건에서 변화 인자와 비교 시 통계학적으로 유의한 차이가 있었다.(P<0.05) 따라서, 임상적용 시 허용선량한도 범위 내에서 관전압은 높여주고 관전류는 영상 화질 저하에 영향을 미치지 않는 범위 내에서 낮게 설정하며, 절편두께는 해상도 저하를 고려하여 얇은 절편두께를 사용하고, 갠트리 각도는 IOML 또는 OML을 이용한다면 선속경화현상에 의해 발생되어지는 인공물을 최소화시켜 영상 판독자와 환자에게 보다 정확한 양질의 영상을 제공할 수 있을 것으로 사료된다.
A new medical X-ray PIV technique was developed using a conventional medical X-ray tube. To acquire images of micro-scale particles, the X-ray PIV system consists of an x-ray CCD camera with high spatial resolution, and a X-ray tube with small a focal spot. A new X-ray exposure control device was developed using a rotating disc shutter to make double pulses which are essential for PIV application. Synchronization methodology was also developed to apply the PIV technique to a conventional medical X-ray tube. In order to check the performance and usefulness of the developed X-ray PIV technique, it was applied to a glycerin flow in an opaque silicon tube. Tungsten particles which have high X-ray absorption coefficient were used as tracer particles. Through this preliminary test, the spatial resolution was found to be higher than ultrafast MRI techniques, and the temporal resolution was higher than conventional X-ray PIV techniques. By improving its performance further and developing more suitable tracers, this medical X-ray PIV technique will have strong potential in the fields of medical imaging or nondestructive inspection as well as diagnosis of practical thermo-fluid flows.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.