• Title/Summary/Keyword: Opaque Tube

Search Result 12, Processing Time 0.026 seconds

Development of X-ray PIV Technique and Its Applications (X-ray PIV 기법의 개발과 적용연구)

  • Lee Sang Joon;Kim Guk Bae;Kim Seok;Kim Yang-Min
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.1
    • /
    • pp.20-25
    • /
    • 2005
  • An x-ray PIV (Particle Image Velocimetry) technique was developed fur measuring quantitative information on flows inside opaque conduits and/or opaque-fluid flows. To check the performance of the x-ray PIV technique developed, it was applied to a liquid flow in an opaque Teflon tube. To acquire x-ray images suitable for PIV velocity field measurements, the refraction-based edge enhancement mechanism was employed with seeding detectable tracer particles. The amassed velocity field data obtained were in a reasonable agreement with the theoretical prediction. The x-ray PIV technique was also applied to get velocity fields of blood flow and to measure size and velocity of micro-bubbles simultaneously, and to visualize the water refilling process in bamboo leaves. The x-ray PIV was found to be a powerful transmission-type flow imaging technique fur measuring quantitative information of flows inside opaque objects and various opaque-fluid flows.

  • PDF

Quantitative Flow Field Visualization of a Flow inside an Opaque Tube Using Angiographic PIV Method (X선관을 이용한 불투명한 물체 내부 유동의 정량적 가시화 연구)

  • Kim, Guk-Bae;Lim, Nam-Yun;Ryu, Jae-Chun;Yim, Dae-Hyun;Lee, Hyung-Koo;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2935-2940
    • /
    • 2007
  • To diagnose circulatory diseases in the viewpoint of hemodynamics, we need to get quantitative hemodynamic information of blood flows related with the vascular diseases with high spatial resolution of tens micrometer and high temporal resolution in the order of millisecond. For investigating in-vivo hemodynamic phenomena, a new diagnosing technique combining medical radiography and PIV method was newly proposed and developed. This angiographic PIV technique consists of a medical X-ray tube, an X-ray CCD camera, a shutter module for double pulses of X-ray, and a synchronizer. The feasibility of the angiographic PIV technique was tested and quantitative flow velocity field distribution of a flow inside an opaque conduit was acquired by the developed system. It can be used for measuring flow phenomena of nontransparent fluids inside opaque conduits.

  • PDF

Simultaneous measurement of size and velocity of micro-bubbles in an opaque tube using X-ray micro-imaging technique (X-ray 미세 영상기법을 이용한 불투명 튜브 내부 미세기포의 크기 및 속도 동시 측정)

  • Kim Seok;Lee Sang Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.45-46
    • /
    • 2003
  • The x-ray micro-imaging technique was employed to measure the size and velocity of micro-bubbles moving in an opaque tube simultaneously. Phase contrast images were obtained at interfaces of micro-bubbles between water and air due to different refractive index. Micro-bubbles of $20\~120{\mu}m$ diameter moving upward in an opaque tube $(\phi=2.7mm)$ were tested. For two different working fluids of tap water and DI water, the measured velocity of micro-bubbles is roughly proportional to the square of bubble size.

  • PDF

Development of X-ray PIV Technique and its Application to Blood Flow (X-ray PIV 기법의 개발과 혈액 유동에의 적용연구)

  • Kim, Guk Bae;Lee, Sang Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.11 s.242
    • /
    • pp.1182-1188
    • /
    • 2005
  • An x-ray PIV (Particle Image Velocimetry) technique was developed to measure quantitative information on flows inside opaque conduits and on opaque-fluid flows. At first, the developed x-ray PIV technique was applied to flow in an opaque Teflon tube. To acquire x-ray images suitable for PIV velocity field measurements, refraction-based edge enhancement mechanism was employed using detectable tracer particles. The optimal distance between with the sample and detector was experimentally determined. The resulting amassed velocity field data were in reasonable agreement with the theoretical prediction. The x-ray PIV technique was also applied to blood flow in a microchannel. The flow pattern of blood was visualifed by enhancing the diffraction/interference -bas ed characteristic s of blood cells on synchrotron x-rays without any contrast agent or tracer particles. That is, the flow-pattern image of blood was achieved by optimizing the sample (blood) to detector distance and the sample thickness. Quantitative velocity field information was obtained by applying PIV algorithm to the enhanced x-ray flow images. The measured velocity field data show a typical flow structure of flow in a macro-scale channel.

Simultaneous Measurement of Size and Velocity of Microbubbles inside Opaque Tube Using X-ray PTV Technique (X-ray PTV 기법을 이용한 불투명 튜브 내부의 미세기포의 크기 및 속도 동시 측정)

  • Kim, Seok;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.4 no.2
    • /
    • pp.69-75
    • /
    • 2006
  • The microbubbles were used in various fields, such as turbulent control, drag reduction, material science and life science. The X-ray PTV using X-ray micro-imaging technique was employed to mea-sure the size and velocity of micro-bubbles moving in an opaque tube simultaneously. Micro-bubbles of $10{\sim}60{\mu}m$ diameter moving upward in an opaque tube (${\phi}$=2.7mm) were tested. Due to the different refractive indices of water and air, phase contrast X-ray images clearly show the exact size and shape of over-lapped microbubbles. In all of the working fluids tested (deionized water, tap water, 0.01 and 0.10M NaCl solutions), the measured terminal velocity of the microbubbles rising through the solution was proportional to the square of the bubble diameter. The rising velocity was increased with increasing mole concentration. The microbubble can be useful as contrast agent or tracer in life science and biology. The X-ray PTV technique should be able to extract useful information on the behavior of various bio/microscale fluid flows that are not amenable to analysis using conventional methods.

  • PDF

X-ray Micro-Imaging Technique and Its Application to Micro-Bubbles in an Opaque Tube (X-ray Micro-Imaging 기법 소개 및 불투명 튜브 내부의 마이크로 버블 가시화 연구)

  • Lee Sang-Joon;Kim Seok;Paik Bu-Geun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.31-34
    • /
    • 2002
  • Imaging techniques using x-ray beam at high energies (>6KeV) such as contact radiography, projection microscopy, and tomography have been used to nondestructively discern internal structure of objects in material science, biology, and medicine. This paper introduces the x-ray micro-imaging method using 1B2 micro-probe line of PAL (Pohang Accelerator Laboratory). Cross-sectional information on low electron density materials can be obtained by probing a sample with coherent synchrotron x-ray beam in an in-line holography setup. Living organism such as plants, insects are practically transparent to high energy x-rays and create phase shift images of x-ray wave front. X-ray micro-images of micro-bubbles of $20\~120\;{\mu}m$ diameter in an opaque tube were recorded. Clear phase contrast images were obtained at Interfaces between bubbles and surrounding liquid due to different decrements of refractive index.

  • PDF

X-ray Micro-Imaging Technique for Simultaneous Measurement of Size and Velocity of Micro-Bubbles (X-ray 미세 영상기법을 이용한 미세기포의 크기 및 속도 동시 측정기술 개발)

  • Kim, Seok;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.659-664
    • /
    • 2004
  • It is important to measure precisely the size and velocity of micro-bubbles used in various field. The synchrotron X-ray micro-imaging technique was employed to measure the size and velocity of micro-bubbles moving in an opaque tube simultaneously. Phase contrast images were obtained at interfaces of micro-bubbles between water and air due to their different refractive indices. The X-ray micro-imaging technique was found to measure an optical fiber with an accuracy of 0.2%. Micro-bubbles of 20∼60$\mu\textrm{m}$ diameter moving upward in an opaque tube (${\Phi}$=2.7mm) were tested to measure bubble size and up-rising velocity. For DI water, the measured velocity of micro-bubbles is nearly proportional to the square of bubble size, agreed well with the theoretical result. In addition, the synchrotron X-ray micro-imaging technique can measure accurately the size and velocity of several overlapped micro-bubbles.

Synchrotron X-ray Micro-imaging Technique for Simultaneous Measurement of Size and Velocity of Micro-bubbles (X-ray 미세 영상기법을 이용한 미세기포의 크기 및 속도 동시측정)

  • Kim, Seok;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1744-1748
    • /
    • 2004
  • It is important to measure precisely the size and velocity of micro-bubbles used in various field. The synchrotron X-ray micro-imaging technique was employed to measure the size and velocity of micro-bubbles moving in an opaque tube simultaneously. Phase contrast images were obtained at interfaces of micro-bubbles between water and air due to their different refractive indices. The X-ray micro-imaging technique was found to measure an optical fiber with an accuracy of 0.2%. Micro-bubbles of $10{\sim}60{\mu}m$ diameter moving upward in an opaque tube (${\phi}=2.7mm$) were tested to measure bubble size and up-rising velocity. For DI water, the measured velocity of micro-bubbles is nearly proportional to the square of bubble size, agreed well with the theoretical result. In addition, the synchrotron X-ray micro-imaging technique can measure accurately the size and velocity of several overlapped micro-bubbles.

  • PDF

A study of beam hardening effect reduction occur in brain CT (Brain CT에서 발생하는 선속경화현상 감소방안에 관한 연구)

  • Kim, Hyeon-ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8479-8486
    • /
    • 2015
  • This study aim is occur in brain CT cause of beam hardening effect and reducing method, We will scan Bone opaque bead phantom on variation of image on the influence factor with equipment called 'Samatom Senation 16' with following listed herein : tube voltage, tube current, slice thickness, gantry angle, base line which affect beam-hardening effect. After that we are going to start Quantitative Analysis resulted in previous scanning and Qualitative Assessment with CT image sheet evaluation. result of quantitative analysis 140kVp $31.56{\pm}2.89HU$ on tube voltage, 150mA $-3.87{\pm}0.12HU$ on tube current, 3mm on slice thickness, and $13.31{\pm}1.03HU$ IOML on gantry angle which was the least beam-hardening effect. Like Qualitative Analysis, we went through Qualitative Assessment and most of valuers got a result of 140kVp on tube voltage, 150mA on tube current, 3mm on slice thickness. As before valuers evaluated gantry angle that scanned image from IOML or OML was the least beam-hardening effect occured. There are meaningful differences when we compare all theses factors statistically(P<0.05). therefore We consider that Minimizing artifact that caused by beam-hardening effect can provide better quality of image to deciphers and patients. if we rise tube voltage in permissible dose limit, set tube current in a limit that does not effect to image quality, use slice thickness too thin enough to harm resolution, use IOML or OML on gantry angle.

Development of X-ray PIV System Using a Medical X-ray Tube (임상용 X-선관을 이용한 X-ray PIV시스템의 개발)

  • Yim, Dae-Hyun;Kim, Guk-Bae;Kim, Do-Il;Lee, Hyong-Koo;Lee, Sang-Joon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.403-406
    • /
    • 2006
  • A new medical X-ray PIV technique was developed using a conventional medical X-ray tube. To acquire images of micro-scale particles, the X-ray PIV system consists of an x-ray CCD camera with high spatial resolution, and a X-ray tube with small a focal spot. A new X-ray exposure control device was developed using a rotating disc shutter to make double pulses which are essential for PIV application. Synchronization methodology was also developed to apply the PIV technique to a conventional medical X-ray tube. In order to check the performance and usefulness of the developed X-ray PIV technique, it was applied to a glycerin flow in an opaque silicon tube. Tungsten particles which have high X-ray absorption coefficient were used as tracer particles. Through this preliminary test, the spatial resolution was found to be higher than ultrafast MRI techniques, and the temporal resolution was higher than conventional X-ray PIV techniques. By improving its performance further and developing more suitable tracers, this medical X-ray PIV technique will have strong potential in the fields of medical imaging or nondestructive inspection as well as diagnosis of practical thermo-fluid flows.

  • PDF