• 제목/요약/키워드: Oocyte Activation

검색결과 162건 처리시간 0.02초

Parthenogenetic Activation of Black Bengal Goat Oocytes

  • Haque, Aminul;Bhuiyan, Mohammad Musharraf Uddin;Khatun, Momena;Shamsuddin, Mohammed
    • 한국수정란이식학회지
    • /
    • 제26권2호
    • /
    • pp.123-128
    • /
    • 2011
  • In vitro maturation and activation of oocytes are primary steps towards biotechnological manipulation in embryology. The objectives of the present study were to determine the oocyte recovery rate per ovary, in vitro maturation rates of oocytes and rates of parthenogenetically activation of matured oocytes in Black Bengal goats. All visible follicles were aspirated to recover follicular fluid from individual ovaries (number of ovaries = 456). The immature cumulus oocyte complexes (COCs; n = 1289) were cultured in tissue culture medium (TCM)-199 supplemented with 10% (v/v) fetal bovine serum (FBS) for 27 hours at $39^{\circ}C$ with 5% $CO_2$ in humidified air. The matured oocytes (n = 248) were activated with 5 ${\mu}M$ ionomycin for 5 minutes followed by treatment with 2 mM 6-dimethylaminopurine (6-DMAP) for 4 hours. After activation, oocytes were cultured for another 14 hours in TCM-199 supplemented with bovine serum albumin (BSA) at $39^{\circ}C$ with 5% $CO_2$ in humidified air. The pronucleus formation in activated oocytes was determined by staining with 1% orcein (whole mount technique). Matured oocytes (n = 176) without activation stimuli were used as control. The mean number of oocytes recovered per ovary was $3.5{\pm}0.5$. The proportion of oocytes matured in vitro, confirmed by the presence of first polar body, was $42.1{\pm}4.7%$. Parthenogenetic activation, evidenced by formation of pronucleus, occurred in $37.2{\pm}15.8%$ of matured oocytes. No pronucleus formation was observed in control oocytes. In conclusion, a combination of ionomycin and 6-DMAP induces activation in one third of Black Bengal goats' oocytes.

Maternal effect genes: Findings and effects on mouse embryo development

  • Kim, Kyeoung-Hwa;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제41권2호
    • /
    • pp.47-61
    • /
    • 2014
  • Stored maternal factors in oocytes regulate oocyte differentiation into embryos during early embryonic development. Before zygotic gene activation (ZGA), these early embryos are mainly dependent on maternal factors for survival, such as macromolecules and subcellular organelles in oocytes. The genes encoding these essential maternal products are referred to as maternal effect genes (MEGs). MEGs accumulate maternal factors during oogenesis and enable ZGA, progression of early embryo development, and the initial establishment of embryonic cell lineages. Disruption of MEGs results in defective embryogenesis. Despite their important functions, only a few mammalian MEGs have been identified. In this review we summarize the roles of known MEGs in mouse fertility, with a particular emphasis on oocytes and early embryonic development. An increased knowledge of the working mechanism of MEGs could ultimately provide a means to regulate oocyte maturation and subsequent early embryonic development.

An effective method for improving outcomes in patients with a fertilization defect

  • Yoon, Hye Jin;Kim, Hyung Jun;Bae, In Hee;Chae, Soo Jin;Yoon, San Hyun;Lee, Won Don;Lim, Jin Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제41권3호
    • /
    • pp.137-139
    • /
    • 2014
  • The effect of artificial oocyte activation (AOA) with a calcium ionophore on intracytoplasmic morphologically selected sperm injection (IMSI) was examined in patients with histories of repeated failed implantation attempts. Four singleton pregnancies and one twin pregnancy were obtained after embryos transfer (5/14, 35.7%). Therefore, AOA combined with IMSI can be considered an option for cycles with a fertilization defect and recurrent implantation failures.

The Use of Bull Round Spermatids for Producing Reconstructed Embryos

  • S.A. Ock;D.O. Kwack;Park, G.J.;S.Y. Choe
    • 한국발생생물학회:학술대회논문집
    • /
    • 한국발생생물학회 2003년도 제3회 국제심포지움 및 학술대회
    • /
    • pp.133-133
    • /
    • 2003
  • Recently, sperm has been used as a vector to carry exogenous genes for the production of transgenic animals. However, the success in cattle is low, due to deficiencies in oocyte activation and sperm decondensation caused by high disulphide bond (S=S) content in mature sperm. This study was carried out to develop an effective method for producing transgenic animals with round spermatids (RS). Two methods of embryo production - electric fusion (EC) or intracyto-plasmic injection (IC) and three activation treatments were compared. RS were isolated from bull testes by Percoll density gradients (20, 35, 40, 45 and 90%). Fusion between ooplast and RS was performed with a single DC electric pulse (1.0 KV/cm, 45 sec) in 0.28 M mannitol solution supplemented with 100 M CaCl2 and 100 M MgCl$_2$. (중략)

  • PDF

Parthenogenetic Activation of Porcine Oocytes and Isolation of Embryonic Stem Cells-like Derived from Parthenogenetic Blastocysts

  • Xu, X.M.;Hua, J.L.;Jia, W.W.;Huang, W.;Yang, C.R.;Dou, Z.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권10호
    • /
    • pp.1510-1516
    • /
    • 2007
  • These experiments were carried out to optimize the parameters of electrical activation, methods of parthenogenetic activation and embryo culture in vitro and meanwhile to isolate embryonic stem cells-like (ESCs) derived from porcine parthenogenetic blastocysts (pPBs). These results showed that, as the electric field strength increased from 1.0 to 2.7 kV/cm, the cleavage rate of parthenogenetic embryos increased gradually but the rate of oocyte lysis was significantly increased when using 2.7 kV/cm field strength. The rate of cleavage in 2.2 and 2.7 kV/cm groups was significantly increased in comparison with that of the 1.0 kV/cm group. A voltage field strength of 2.2 kV/cm DC was used to investigate blastocyst development following activation with a single pulse of 30 or $60-{\mu}sec$ pulse duration. The optimum pulse duration was 30-${\mu}sec$, with a blastocyst rate of 20.7%. Multiple pulses were inferior to a single pulse for blastocyst yield (8.0% vs. 29.9) (p<0.05). For porcine oocyte parthenogenetic activation methods, the rates of cleavage (79.0% vs. 59.8%) and blastocysts (19.4% vs. 3.4%) were significantly increased in electrical activation in contrast to chemical activation with ionomycin/6-DMAP (p<0.05). Rates of cleavage and blastocyst formation in NCSU-23 and PZM-3 embryo media were higher than those of G1.3/G2.3 serial culture media, but there was no significant difference among the three groups. The total cell number of blastocysts in PZM-3 embryo culture media containing $5{\mu}g/ml$ insulin was significantly higher than that of the control (no insulin) ($44.3{\pm}9.1$ vs. $33.9{\pm}11.7$). For isolation of PESCs-like, the rates of porcine blastocysts attached to feeder layers and ICM colony formation in Method B (nude embryo culture) were better than those in Method A (intact embryo culture).

Cell Cycle and Apoptosis of Bovine Fetal Fibroblast Cells following Different Activation Treatments

  • Bhak, Jong-Sik;Choe, Sang-yong
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2002년도 춘계학술발표대회 발표논문초록집
    • /
    • pp.37-37
    • /
    • 2002
  • The success of embryo cloning depends on numerous factors; interaction between recipient ooplasm and donor nucleus, nuclear reprogramming, oocyte activation, and donor cell cycle and type. In this study, the cell cycle and apoptosis of bovine fetal fibroblast as a donor cell for embryo cloning were evaluated following different activation treatments. (omitted)

  • PDF

소 난자의 체외성숙시 난구세포와 난세포질에서 다르게 발현되는 Matrix Metalloproteinases의 분석 (The Expression of Matrix Metalloproteinases Activated Differently on In-Vitro Maturation of oocytes Cytoplasm and Cumulus Cells in Bovine)

  • 김상환;윤종택
    • 한국수정란이식학회지
    • /
    • 제33권3호
    • /
    • pp.99-105
    • /
    • 2018
  • To determine the differences in the in-vitro ovum maturation process of bovine, we compared the expression of MMPs in these oocytes and cumulus cell throughout oocytes maturated. In an attempt to investigate the effect of MMP activation and inhibitors in total protein of cumulus cell and, oocytes during oocytes maturation, we examined and monitored the localization and expression of MMPs (MMP-2 and MMP-9), TIMPs (TIMP-2 and TIMP-3), as well as their expression profiles (Real-time PCR, Gelatin Zymography and ELISA). Our results that the bovine oocytes MMP-2 and MMP-9 level was significantly associated with the rate of maturity of oocytes (P<0.05). In cumulus cell, MMP-2 was highly expressed in all stages of the oocyte's maturation. The final oocytes maturation exhibited strong gelatinase activity. There was no significant correlation between cumulus cell MMP-9 and the maturation rate of oocytes. However, for the oocyte cytoplasm MMP-9 expression was significant correlation to the maturation oocytes. There was no significant correlation between cumulonimbus cells MMP-9 and oocyte maturation rates; however, for oocyte cytoplasm, MMP-9 expression was significantly correlated with mature oocyte. However, the TIMP-1 and TIMP-2 protein expression patterns are not correlated with the maturation rate of the oocyte. Our results suggest that MMP different expression pattern may regulate the morphological remodeling of oocyte's in the cumulus cell. Further, the MMP-2 expression has a strong relation with a higher maturation rate of the oocyte.

Development of Bovine Embryos Produced by Intracytoplasmic Sperm Injection (ICSI)

  • Ock, S.A.;Kwack, D.O.;Cho, S.R.;Cho, S.K.;Yeao, E.H.;Yoo, J.G.;Lee, Y.R.;Lee, H.J.;Choe, S.Y.;Rho, G.J.
    • 한국수정란이식학회지
    • /
    • 제17권1호
    • /
    • pp.13-21
    • /
    • 2002
  • Intracytoplasmic Sperm Injection (ICSI) has been widely used fur both human infertility and basic research. However, the high incidence of chromosomal abnormality is severe problem in cattle. Various oocyte activation stimuli, therefore, were compared by assessment of developmental capacity and chromosome analysis. Motile sperm selected by Percoll-density gradient were treated with 5 mM dithiothreitol (DTT) and injected into an oocyte matured fur 24 h. Eggs were then allocated into 5 treatment groups. Group 1 (control), sperm injection was performed without any further activation stimuli to the oocytes. Group 2 (handled control), sham injection was performed without sperm. In Group 3, oocytes exposed to 5 (M ionomycin for 5 min at 39(C. Group 4. ionomycine + 1.9 mM demethylaminopurine (DMAP, 3 h) and Group 5, ionomycine + 3 h culture in Ml99 + DMAP. Cleavage and the later development rate in Groups 1, 2 and 3 were significantly (P<0.05) lower than those in Groups 4 and 5. The incidence of chromosomal abnormality in the embryos treated directly with DMAP after ionomycine was relatively higher than in the embryo of Group 3 h, delayed DMAP treatment. From this results DMAP caused to be arrested the release of the 2nd polar body, resulting in changes of chromosomal pattern. Therefore, the time interval between ionomycin and DMAP is a crucial role in bovine ICSI.

In Vitro Maturation of Porcine Oocytes in a Dry Incubator without $CO_2$ Gas Supplement

  • Park, Kwang-Wook
    • Reproductive and Developmental Biology
    • /
    • 제36권3호
    • /
    • pp.141-145
    • /
    • 2012
  • The present study was conducted to develop a simple method for porcine oocyte maturation without $CO_2$ regulation. In experiment 1, we evaluated that the effect of $CO_2$ non-supplement on porcine oocyte maturation. Cumulusoocyte complexes (COCs) were collected from 2~6 mm follicles and divided into three groups (Control, tube-$CO_2$, and tube-non-$CO_2$). For control, COCs were cultured in 4-well multidish in a $CO_2$ incubator. For tube-$CO_2$, COCs were cultured in a round-bottom tube in a $CO_2$ incubator, and for tube-non-$CO_2$, COCs were cultured in a round-bottom tube sealed tightly without $CO_2$ supplement in a dry incubator. The proportion of oocytes reached to metaphase II (M-II) was not significantly different among three groups (87.9% to 91.4%). In experiment 2, we evaluated the effect of $CO_2$ non-supplement during oocyte maturation on development of embryos. Oocytes with a polar body were divided into two groups (Control and tube-non-$CO_2$) and applied 1.1 kV/cm or 1.2 kV/cm voltages for parthenogenetic activation. After activation, embryos were cultured for 6 days and examined the development. The proportion of embryos cleaved was not significantly different among treatment (86.3% to 91.5%). The proportion of embryo reached to blastocyst stage was not significantly different among treatment (13.9% to 25.2%). The cell number of blastocysts was not significantly different among treatment (29.0 to 32.4). In conclusion, oocytes cultured in a dry incubator without $CO_2$ supplement have enough competence to development after parthenogenetic activation. These results would be useful for transporting oocytes or embryos a long distance.

Phosphorylation Status of RNA Polymerase II Carboxyl-terminal Domain in Porcine Oocytes and Early Embryos

  • Oqani, Reza K.;Zhang, Jin Yu;Lee, Min-Gu;Diao, Yun Fei;Jin, Dong-Il
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권6호
    • /
    • pp.789-793
    • /
    • 2012
  • Fertilization of the oocyte commences embryogenesis during which maternally inherited mRNAs are degraded and the embryonic genome is activated. Transcription of embryonic mRNA is initiated by embryonic genome activation (EGA). RNA polymerase II (RNA Pol II) is responsible for the synthesis of mRNAs and most small nuclear RNAs, and consists of 12 subunits, the largest of which characteristically harbors a unique C-terminal domain (CTD). Transcriptional activity of RNA Pol II is highly regulated, in particular, by phosphorylation of serine residues in the CTD. Here, we have shown the presence of RNA Pol II CTD phosphoisoforms in porcine oocytes and preimplantation embryos. The distribution pattern as well as phosphorylation dynamics in germinal vesicles and during embryogenesis differed in developmental stages with these isoforms, indicating a role of RNA Pol II CTD phosphorylation at the serine residue in transcriptional activation during both oocyte growth and embryonic genome activation. We additionally examined the effects of the RNA Pol II inhibitor, ${\alpha}$-amanitin, on embryo development. Our results show that inhibition of polymerase, even at very early stages and for a short period of time, dramatically impaired blastocyst formation. These findings collectively suggest that the functionality of maternal RNA Pol II, and consequently, expression of early genes regulated by this enzyme are essential for proper embryo development.