DOI QR코드

DOI QR Code

Maternal effect genes: Findings and effects on mouse embryo development

  • Kim, Kyeoung-Hwa (Department of Biomedical Science, College of Life Science, CHA University) ;
  • Lee, Kyung-Ah (Department of Biomedical Science, College of Life Science, CHA University)
  • Received : 2014.05.01
  • Accepted : 2014.05.29
  • Published : 2014.06.30

Abstract

Stored maternal factors in oocytes regulate oocyte differentiation into embryos during early embryonic development. Before zygotic gene activation (ZGA), these early embryos are mainly dependent on maternal factors for survival, such as macromolecules and subcellular organelles in oocytes. The genes encoding these essential maternal products are referred to as maternal effect genes (MEGs). MEGs accumulate maternal factors during oogenesis and enable ZGA, progression of early embryo development, and the initial establishment of embryonic cell lineages. Disruption of MEGs results in defective embryogenesis. Despite their important functions, only a few mammalian MEGs have been identified. In this review we summarize the roles of known MEGs in mouse fertility, with a particular emphasis on oocytes and early embryonic development. An increased knowledge of the working mechanism of MEGs could ultimately provide a means to regulate oocyte maturation and subsequent early embryonic development.

Keywords

References

  1. Li L, Zheng P, Dean J. Maternal control of early mouse development. Development 2010;137:859-70. https://doi.org/10.1242/dev.039487
  2. Kim KH, Kim EY, Lee KA. SEBOX is essential for early embryogenesis at the two-cell stage in the mouse. Biol Reprod 2008;79:1192-201. https://doi.org/10.1095/biolreprod.108.068478
  3. Kim KH, Kim EY, Kim Y, Kim E, Lee HS, Yoon SY, et al. Gas6 downregulation impaired cytoplasmic maturation and pronuclear formation independent to the MPF activity. PLoS One 2011;6:e23304. https://doi.org/10.1371/journal.pone.0023304
  4. Tong ZB, Gold L, Pfeifer KE, Dorward H, Lee E, Bondy CA, et al. Mater, a maternal effect gene required for early embryonic development in mice. Nat Genet 2000;26:267-8. https://doi.org/10.1038/81547
  5. Christians E, Davis AA, Thomas SD, Benjamin IJ. Maternal effect of Hsf1 on reproductive success. Nature 2000;407:693-4. https://doi.org/10.1038/35037669
  6. Howell CY, Bestor TH, Ding F, Latham KE, Mertineit C, Trasler JM, et al. Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell 2001;104:829-38. https://doi.org/10.1016/S0092-8674(01)00280-X
  7. Bourc'his D, Xu GL, Lin CS, Bollman B, Bestor TH. Dnmt3L and the establishment of maternal genomic imprints. Science 2001;294:2536-9. https://doi.org/10.1126/science.1065848
  8. Leader B, Lim H, Carabatsos MJ, Harrington A, Ecsedy J, Pellman D, et al. Formin-2, polyploidy, hypofertility and positioning of the meiotic spindle in mouse oocytes. Nat Cell Biol 2002;4:921-8. https://doi.org/10.1038/ncb880
  9. Gurtu VE, Verma S, Grossmann AH, Liskay RM, Skarnes WC, Baker SM. Maternal effect for DNA mismatch repair in the mouse. Genetics 2002;160:271-7.
  10. Narducci MG, Fiorenza MT, Kang SM, Bevilacqua A, Di Giacomo M, Remotti D, et al. TCL1 participates in early embryonic development and is overexpressed in human seminomas. Proc Natl Acad Sci U S A 2002;99:11712-7. https://doi.org/10.1073/pnas.182412399
  11. Burns KH, Viveiros MM, Ren Y, Wang P, DeMayo FJ, Frail DE, et al. Roles of NPM2 in chromatin and nucleolar organization in oocytes and embryos. Science 2003;300:633-6. https://doi.org/10.1126/science.1081813
  12. Payer B, Saitou M, Barton SC, Thresher R, Dixon JP, Zahn D, et al. Stella is a maternal effect gene required for normal early development in mice. Curr Biol 2003;13:2110-7. https://doi.org/10.1016/j.cub.2003.11.026
  13. Wu X, Viveiros MM, Eppig JJ, Bai Y, Fitzpatrick SL, Matzuk MM. Zygote arrest 1 (Zar1) is a novel maternal-effect gene critical for the oocyte-to-embryo transition. Nat Genet 2003;33:187-91. https://doi.org/10.1038/ng1079
  14. Roest HP, Baarends WM, de Wit J, van Klaveren JW, Wassenaar E, Hoogerbrugge JW, et al. The ubiquitin-conjugating DNA repair enzyme HR6A is a maternal factor essential for early embryonic development in mice. Mol Cell Biol 2004;24:5485-95. https://doi.org/10.1128/MCB.24.12.5485-5495.2004
  15. Ramos SB, Stumpo DJ, Kennington EA, Phillips RS, Bock CB, Ribeiro- Neto F, et al. The CCCH tandem zinc-finger protein Zfp36l2 is crucial for female fertility and early embryonic development. Development 2004;131:4883-93. https://doi.org/10.1242/dev.01336
  16. Sekiguchi S, Kwon J, Yoshida E, Hamasaki H, Ichinose S, Hideshima M, et al. Localization of ubiquitin C-terminal hydrolase L1 in mouse ova and its function in the plasma membrane to block polyspermy. Am J Pathol 2006;169:1722-9. https://doi.org/10.2353/ajpath.2006.060301
  17. Zheng P, Dean J. Role of Filia, a maternal effect gene, in maintaining euploidy during cleavage-stage mouse embryogenesis. Proc Natl Acad Sci U S A 2009;106:7473-8. https://doi.org/10.1073/pnas.0900519106
  18. O'Carroll D, Erhardt S, Pagani M, Barton SC, Surani MA, Jenuwein T. The polycomb-group gene Ezh2 is required for early mouse development. Mol Cell Biol 2001;21:4330-6. https://doi.org/10.1128/MCB.21.13.4330-4336.2001
  19. Erhardt S, Su IH, Schneider R, Barton S, Bannister AJ, Perez-Burgos L, et al. Consequences of the depletion of zygotic and embryonic enhancer of zeste 2 during preimplantation mouse development. Development 2003;130:4235-48. https://doi.org/10.1242/dev.00625
  20. Larue L, Ohsugi M, Hirchenhain J, Kemler R. E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc Natl Acad Sci U S A 1994;91:8263-7. https://doi.org/10.1073/pnas.91.17.8263
  21. De Vries WN, Evsikov AV, Haac BE, Fancher KS, Holbrook AE, Kemler R, et al. Maternal beta-catenin and E-cadherin in mouse development. Development 2004;131:4435-45. https://doi.org/10.1242/dev.01316
  22. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999;99:247-57. https://doi.org/10.1016/S0092-8674(00)81656-6
  23. Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E, et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 2004;429:900-3. https://doi.org/10.1038/nature02633
  24. Bultman S, Gebuhr T, Yee D, La Mantia C, Nicholson J, Gilliam A, et al. A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol Cell 2000; 6:1287-95. https://doi.org/10.1016/S1097-2765(00)00127-1
  25. Bultman SJ, Gebuhr TC, Pan H, Svoboda P, Schultz RM, Magnuson T. Maternal BRG1 regulates zygotic genome activation in the mouse. Genes Dev 2006;20:1744-54. https://doi.org/10.1101/gad.1435106
  26. Murchison EP, Stein P, Xuan Z, Pan H, Zhang MQ, Schultz RM, et al. Critical roles for Dicer in the female germline. Genes Dev 2007; 21:682-93. https://doi.org/10.1101/gad.1521307
  27. Esposito G, Vitale AM, Leijten FP, Strik AM, Koonen-Reemst AM, Yurttas P, et al. Peptidylarginine deiminase (PAD) 6 is essential for oocyte cytoskeletal sheet formation and female fertility. Mol Cell Endocrinol 2007;273:25-31. https://doi.org/10.1016/j.mce.2007.05.005
  28. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, et al. The role of autophagy during the early neonatal starvation period. Nature 2004;432:1032-6. https://doi.org/10.1038/nature03029
  29. Tsukamoto S, Kuma A, Murakami M, Kishi C, Yamamoto A, Mizushima N. Autophagy is essential for preimplantation development of mouse embryos. Science 2008;321:117-20. https://doi.org/10.1126/science.1154822
  30. Morita S, Horii T, Kimura M, Goto Y, Ochiya T, Hatada I. One Argonaute family member, Eif2c2 (Ago2), is essential for development and appears not to be involved in DNA methylation. Genomics 2007;89:687-96. https://doi.org/10.1016/j.ygeno.2007.01.004
  31. Kaneda M, Tang F, O'Carroll D, Lao K, Surani MA. Essential role for Argonaute2 protein in mouse oogenesis. Epigenetics Chromatin 2009;2:9. https://doi.org/10.1186/1756-8935-2-9
  32. Lykke-Andersen K, Gilchrist MJ, Grabarek JB, Das P, Miska E, Zernicka- Goetz M. Maternal Argonaute 2 is essential for early mouse development at the maternal-zygotic transition. Mol Biol Cell 2008;19:4383-92. https://doi.org/10.1091/mbc.E08-02-0219
  33. Torres-Padilla ME, Zernicka-Goetz M. Role of TIF1alpha as a modulator of embryonic transcription in the mouse zygote. J Cell Biol 2006;174:329-38. https://doi.org/10.1083/jcb.200603146
  34. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 1998;95:379-91. https://doi.org/10.1016/S0092-8674(00)81769-9
  35. Foygel K, Choi B, Jun S, Leong DE, Lee A, Wong CC, et al. A novel and critical role for Oct4 as a regulator of the maternal-embryonic transition. PLoS One 2008;3:e4109. https://doi.org/10.1371/journal.pone.0004109
  36. Ma J, Zeng F, Schultz RM, Tseng H. Basonuclin: a novel mammalian maternal-effect gene. Development 2006;133:2053-62. https://doi.org/10.1242/dev.02371
  37. Wan LB, Pan H, Hannenhalli S, Cheng Y, Ma J, Fedoriw A, et al. Maternal depletion of CTCF reveals multiple functions during oocyte and preimplantation embryo development. Development 2008;135:2729-38. https://doi.org/10.1242/dev.024539
  38. Li L, Baibakov B, Dean J. A subcortical maternal complex essential for preimplantation mouse embryogenesis. Dev Cell 2008; 15:416-25. https://doi.org/10.1016/j.devcel.2008.07.010
  39. Tong ZB, Nelson LM. A mouse gene encoding an oocyte antigen associated with autoimmune premature ovarian failure. Endocrinology 1999;140:3720-6. https://doi.org/10.1210/endo.140.8.6911
  40. Tong ZB, Nelson LM, Dean J. Mater encodes a maternal protein in mice with a leucine-rich repeat domain homologous to porcine ribonuclease inhibitor. Mamm Genome 2000;11:281-7. https://doi.org/10.1007/s003350010053
  41. McMillan DR, Xiao X, Shao L, Graves K, Benjamin IJ. Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J Biol Chem 1998;273:7523-8. https://doi.org/10.1074/jbc.273.13.7523
  42. Cardoso MC, Leonhardt H. DNA methyltransferase is actively retained in the cytoplasm during early development. J Cell Biol 1999;147:25-32. https://doi.org/10.1083/jcb.147.1.25
  43. Kono T, Obata Y, Yoshimzu T, Nakahara T, Carroll J. Epigenetic modifications during oocyte growth correlates with extended parthenogenetic development in the mouse. Nat Genet 1996;13:91-4. https://doi.org/10.1038/ng0596-91
  44. Davis TL, Yang GJ, McCarrey JR, Bartolomei MS. The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development. Hum Mol Genet 2000;9:2885-94. https://doi.org/10.1093/hmg/9.19.2885
  45. Leader B, Leder P. Formin-2, a novel formin homology protein of the cappuccino subfamily, is highly expressed in the developing and adult central nervous system. Mech Dev 2000;93:221-31. https://doi.org/10.1016/S0925-4773(00)00276-8
  46. Emmons S, Phan H, Calley J, Chen W, James B, Manseau L. Cappuccino, a Drosophila maternal effect gene required for polarity of the egg and embryo, is related to the vertebrate limb deformity locus. Genes Dev 1995;9:2482-94. https://doi.org/10.1101/gad.9.20.2482
  47. Zeller R, Haramis AG, Zuniga A, McGuigan C, Dono R, Davidson G, et al. Formin defines a large family of morphoregulatory genes and functions in establishment of the polarising region. Cell Tissue Res 1999;296:85-93. https://doi.org/10.1007/s004410051269
  48. Schuh M, Ellenberg J. A new model for asymmetric spindle positioning in mouse oocytes. Curr Biol 2008;18:1986-92. https://doi.org/10.1016/j.cub.2008.11.022
  49. Baker SM, Bronner CE, Zhang L, Plug AW, Robatzek M, Warren G, et al. Male mice defective in the DNA mismatch repair gene PMS2 exhibit abnormal chromosome synapsis in meiosis. Cell 1995;82:309-19. https://doi.org/10.1016/0092-8674(95)90318-6
  50. Laine J, Kunstle G, Obata T, Sha M, Noguchi M. The protooncogene TCL1 is an Akt kinase coactivator. Mol Cell 2000;6:395-407. https://doi.org/10.1016/S1097-2765(00)00039-3
  51. Narducci MG, Virgilio L, Engiles JB, Buchberg AM, Billips L, Facchiano A, et al. The murine Tcl1 oncogene: embryonic and lymphoid cell expression. Oncogene 1997;15:919-26. https://doi.org/10.1038/sj.onc.1201246
  52. Bowles J, Teasdale RP, James K, Koopman P. Dppa3 is a marker of pluripotency and has a human homologue that is expressed in germ cell tumours. Cytogenet Genome Res 2003;101:261-5. https://doi.org/10.1159/000074346
  53. Sato M, Kimura T, Kurokawa K, Fujita Y, Abe K, Masuhara M, et al. Identification of PGC7, a new gene expressed specifically in preimplantation embryos and germ cells. Mech Dev 2002;113:91-4. https://doi.org/10.1016/S0925-4773(02)00002-3
  54. Jentsch S, McGrath JP, Varshavsky A. The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature 1987;329:131-4. https://doi.org/10.1038/329131a0
  55. Lai WS, Carballo E, Thorn JM, Kennington EA, Blackshear PJ. Interactions of CCCH zinc finger proteins with mRNA. Binding of tristetraprolin-related zinc finger proteins to Au-rich elements and destabilization of mRNA. J Biol Chem 2000;275:17827-37. https://doi.org/10.1074/jbc.M001696200
  56. Kwon J, Kikuchi T, Setsuie R, Ishii Y, Kyuwa S, Yoshikawa Y. Characterization of the testis in congenitally ubiquitin carboxy-terminal hydrolase-1 (Uch-L1) defective (gad) mice. Exp Anim 2003;52:1-9. https://doi.org/10.1538/expanim.52.1
  57. Sekiguchi S, Yoshikawa Y, Tanaka S, Kwon J, Ishii Y, Kyuwa S, et al. Immunohistochemical analysis of protein gene product 9.5, a ubiquitin carboxyl-terminal hydrolase, during placental and embryonic development in the mouse. Exp Anim 2003;52:365-9. https://doi.org/10.1538/expanim.52.365
  58. Osaka H, Wang YL, Takada K, Takizawa S, Setsuie R, Li H, et al. Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. Hum Mol Genet 2003;12:1945-58. https://doi.org/10.1093/hmg/ddg211
  59. Kwon J, Wang YL, Setsuie R, Sekiguchi S, Sato Y, Sakurai M, et al. Two closely related ubiquitin C-terminal hydrolase isozymes function as reciprocal modulators of germ cell apoptosis in cryptorchid testis. Am J Pathol 2004;165:1367-74. https://doi.org/10.1016/S0002-9440(10)63394-9
  60. Yamazaki K, Wakasugi N, Sakakibara A, Tomita T. Reduced fertility in gracile axonal dystrophy (gad) mice. Jikken Dobutsu 1988; 37:195-9.
  61. Yamazaki K, Wakasugi N, Tomita T, Kikuchi T, Mukoyama M, Ando K. Gracile axonal dystrophy (GAD), a new neurological mutant in the mouse. Proc Soc Exp Biol Med 1988;187:209-15. https://doi.org/10.3181/00379727-187-42656
  62. Saigoh K, Wang YL, Suh JG, Yamanishi T, Sakai Y, Kiyosawa H, et al. Intragenic deletion in the gene encoding ubiquitin carboxyterminal hydrolase in gad mice. Nat Genet 1999;23:47-51.
  63. Sauer B, Henderson N. Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci U S A 1988;85:5166-70. https://doi.org/10.1073/pnas.85.14.5166
  64. Sewalt RG, van der Vlag J, Gunster MJ, Hamer KM, den Blaauwen JL, Satijn DP, et al. Characterization of interactions between the mammalian polycomb-group proteins Enx1/EZH2 and EED suggests the existence of different mammalian polycomb-group protein complexes. Mol Cell Biol 1998;18:3586-95. https://doi.org/10.1128/MCB.18.6.3586
  65. Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 2006;439:871-4. https://doi.org/10.1038/nature04431
  66. Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, Worringer KA, Wang H, et al. Role of histone H3 lysine 27 methylation in X inactivation. Science 2003;300:131-5. https://doi.org/10.1126/science.1084274
  67. Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2000;2:76-83. https://doi.org/10.1038/35000025
  68. de Vries WN, Binns LT, Fancher KS, Dean J, Moore R, Kemler R, et al. Expression of Cre recombinase in mouse oocytes: a means to study maternal effect genes. Genesis 2000;26:110-2. https://doi.org/10.1002/(SICI)1526-968X(200002)26:2<110::AID-GENE2>3.0.CO;2-8
  69. Yanagisawa Y, Ito E, Yuasa Y, Maruyama K. The human DNA methyltransferases DNMT3A and DNMT3B have two types of promoters with different CpG contents. Biochim Biophys Acta 2002;1577:457-65. https://doi.org/10.1016/S0167-4781(02)00482-7
  70. Robertson KD, Uzvolgyi E, Liang G, Talmadge C, Sumegi J, Gonzales FA, et al. The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res 1999;27:2291-8. https://doi.org/10.1093/nar/27.11.2291
  71. Galetzka D, Weis E, Tralau T, Seidmann L, Haaf T. Sex-specific windows for high mRNA expression of DNA methyltransferases 1 and 3A and methyl-CpG-binding domain proteins 2 and 4 in human fetal gonads. Mol Reprod Dev 2007;74:233-41. https://doi.org/10.1002/mrd.20615
  72. Kingston RE, Narlikar GJ. ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev 1999;13:2339-52. https://doi.org/10.1101/gad.13.18.2339
  73. Ambros V. The functions of animal microRNAs. Nature 2004;431: 350-5. https://doi.org/10.1038/nature02871
  74. Hannon GJ. RNA interference. Nature 2002;418:244-51. https://doi.org/10.1038/418244a
  75. Suh N, Baehner L, Moltzahn F, Melton C, Shenoy A, Chen J, et al. MicroRNA function is globally suppressed in mouse oocytes and early embryos. Curr Biol 2010;20:271-7. https://doi.org/10.1016/j.cub.2009.12.044
  76. Rothnagel JA, Rogers GE. Citrulline in proteins from the enzymatic deimination of arginine residues. Methods Enzymol 1984; 107:624-31. https://doi.org/10.1016/0076-6879(84)07046-4
  77. Wright PW, Bolling LC, Calvert ME, Sarmento OF, Berkeley EV, Shea MC, et al. ePAD, an oocyte and early embryo-abundant peptidylarginine deiminase-like protein that localizes to egg cytoplasmic sheets. Dev Biol 2003;256:73-88.
  78. Yurttas P, Vitale AM, Fitzhenry RJ, Cohen-Gould L, Wu W, Gossen JA, et al. Role for PADI6 and the cytoplasmic lattices in ribosomal storage in oocytes and translational control in the early mouse embryo. Development 2008;135:2627-36. https://doi.org/10.1242/dev.016329
  79. Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, et al. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 2001;152:657-68. https://doi.org/10.1083/jcb.152.4.657
  80. DeRenzo C, Seydoux G. A clean start: degradation of maternal proteins at the oocyte-to-embryo transition. Trends Cell Biol 2004;14:420-6. https://doi.org/10.1016/j.tcb.2004.07.005
  81. Tsukamoto S, Kuma A, Mizushima N. The role of autophagy during the oocyte-to-embryo transition. Autophagy 2008;4:1076-8. https://doi.org/10.4161/auto.7065
  82. Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 2004;6:463-77. https://doi.org/10.1016/S1534-5807(04)00099-1
  83. Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 2004;305:1437-41. https://doi.org/10.1126/science.1102513
  84. O'Carroll D, Mecklenbrauker I, Das PP, Santana A, Koenig U, Enright AJ, et al. A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway. Genes Dev 2007;21:1999-2004. https://doi.org/10.1101/gad.1565607
  85. Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 2005;7:719-23. https://doi.org/10.1038/ncb1274
  86. Le Douarin B, Zechel C, Garnier JM, Lutz Y, Tora L, Pierrat P, et al. The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18. EMBO J 1995;14:2020-33.
  87. Takeda J, Seino S, Bell GI. Human Oct3 gene family: cDNA sequences, alternative splicing, gene organization, chromosomal location, and expression at low levels in adult tissues. Nucleic Acids Res 1992;20:4613-20. https://doi.org/10.1093/nar/20.17.4613
  88. Palmieri SL, Peter W, Hess H, Scholer HR. Oct-4 transcription factor is differentially expressed in the mouse embryo during establishment of the first two extraembryonic cell lineages involved in implantation. Dev Biol 1994;166:259-67. https://doi.org/10.1006/dbio.1994.1312
  89. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663-76. https://doi.org/10.1016/j.cell.2006.07.024
  90. Yoon SJ, Koo DB, Park JS, Choi KH, Han YM, Lee KA. Role of cytosolic malate dehydrogenase in oocyte maturation and embryo development. Fertil Steril 2006;86:1129-36. https://doi.org/10.1016/j.fertnstert.2006.02.105
  91. Yoon SJ, Kim EY, Kim YS, Lee HS, Kim KH, Bae J, et al. Role of Bcl2- like 10 (Bcl2l10) in Regulating Mouse Oocyte Maturation. Biol Reprod 2009;81:497-506. https://doi.org/10.1095/biolreprod.108.073759
  92. Lee HS, Kim EY, Kim KH, Moon J, Park KS, Kim KS, et al. Obox4 critically regulates cAMP-dependent meiotic arrest and MI-MII transition in oocytes. FASEB J 2010;24:2314-24. https://doi.org/10.1096/fj.09-147314
  93. Lee HS, Kim EY, Lee KA. Changes in gene expression associated with oocyte meiosis after Obox4 RNAi. Clin Exp Reprod Med 2011;38:68-74. https://doi.org/10.5653/cerm.2011.38.2.68
  94. Kim E, Yoon SJ, Kim EY, Kim Y, Lee HS, Kim KH, et al. Function of COP9 signalosome in regulation of mouse oocytes meiosis by regulating MPF activity and securing degradation. PLoS One 2011;6:e25870. https://doi.org/10.1371/journal.pone.0025870
  95. Lee SY, Lee HS, Kim EY, Ko JJ, Yoon TK, Lee WS, et al. Thioredoxininteracting protein regulates glucose metabolism and affects cytoplasmic streaming in mouse oocytes. PLoS One 2013;8:e70708. https://doi.org/10.1371/journal.pone.0070708
  96. Dean J. Oocyte-specific genes regulate follicle formation, fertility and early mouse development. J Reprod Immunol 2002;53:171-80. https://doi.org/10.1016/S0165-0378(01)00100-0
  97. Cinquanta M, Rovescalli AC, Kozak CA, Nirenberg M. Mouse Sebox homeobox gene expression in skin, brain, oocytes, and two-cell embryos. Proc Natl Acad Sci U S A 2000;97:8904-9. https://doi.org/10.1073/pnas.97.16.8904
  98. Ohashi K, Nagata K, Toshima J, Nakano T, Arita H, Tsuda H, et al. Stimulation of sky receptor tyrosine kinase by the product of growth arrest-specific gene 6. J Biol Chem 1995;270:22681-4. https://doi.org/10.1074/jbc.270.39.22681
  99. Manfioletti G, Brancolini C, Avanzi G, Schneider C. The protein encoded by a growth arrest-specific gene (gas6) is a new member of the vitamin K-dependent proteins related to protein S, a negative coregulator in the blood coagulation cascade. Mol Cell Biol 1993;13:4976-85. https://doi.org/10.1128/MCB.13.8.4976
  100. Lu Q, Gore M, Zhang Q, Camenisch T, Boast S, Casagranda F, et al. Tyro-3 family receptors are essential regulators of mammalian spermatogenesis. Nature 1999;398:723-8. https://doi.org/10.1038/19554
  101. Tian Q, Kopf GS, Brown RS, Tseng H. Function of basonuclin in increasing transcription of the ribosomal RNA genes during mouse oogenesis. Development 2001;128:407-16.
  102. Chao W, Huynh KD, Spencer RJ, Davidow LS, Lee JT. CTCF, a candidate trans-acting factor for X-inactivation choice. Science 2002;295:345-7. https://doi.org/10.1126/science.1065982
  103. Fedoriw AM, Stein P, Svoboda P, Schultz RM, Bartolomei MS. Transgenic RNAi reveals essential function for CTCF in H19 gene imprinting. Science 2004;303:238-40. https://doi.org/10.1126/science.1090934
  104. Stanford WL, Cohn JB, Cordes SP. Gene-trap mutagenesis: past, present and beyond. Nat Rev Genet 2001;2:756-68. https://doi.org/10.1038/35093548

Cited by

  1. Associations among Sebox and Other MEGs and Its Effects on Early Embryogenesis vol.10, pp.2, 2014, https://doi.org/10.1371/journal.pone.0115050
  2. The Mechanism of Environmental Endocrine Disruptors (DEHP) Induces Epigenetic Transgenerational Inheritance of Cryptorchidism vol.10, pp.6, 2014, https://doi.org/10.1371/journal.pone.0126403
  3. The Role of Maternal-Effect Genes in Mammalian Development: Are Mammalian Embryos Really an Exception? vol.12, pp.3, 2014, https://doi.org/10.1007/s12015-016-9648-6
  4. Postovulatory aging affects dynamics of mRNA, expression and localization of maternal effect proteins, spindle integrity and pericentromeric proteins in mouse oocytes vol.31, pp.1, 2014, https://doi.org/10.1093/humrep/dev279
  5. Inhibition of phosphorylated Ser473‐Akt from translocating into the nucleus contributes to 2‐cell arrest and defective zygotic genome activation in mouse preimplantation embryogenesis vol.58, pp.3, 2014, https://doi.org/10.1111/dgd.12273
  6. Cloning of Porcine Pituitary Tumor Transforming Gene 1 and Its Expression in Porcine Oocytes and Embryos vol.11, pp.4, 2014, https://doi.org/10.1371/journal.pone.0153189
  7. Obesity-Dependent Increases in Oocyte mRNAs Are Associated With Increases in Proinflammatory Signaling and Gut Microbial Abundance of Lachnospiraceae in Female Mice vol.157, pp.4, 2014, https://doi.org/10.1210/en.2015-1851
  8. The miR-125 family is an important regulator of the expression and maintenance of maternal effect genes during preimplantational embryo development vol.6, pp.11, 2014, https://doi.org/10.1098/rsob.160181
  9. Role for PADI6 in securing the mRNA-MSY2 complex to the oocyte cytoplasmic lattices vol.16, pp.4, 2017, https://doi.org/10.1080/15384101.2016.1261225
  10. Mitochondrial Modification Techniques and Ethical Issues vol.6, pp.3, 2014, https://doi.org/10.3390/jcm6030025
  11. Dynamics of the epigenetic landscape during the maternal-to-zygotic transition vol.19, pp.7, 2014, https://doi.org/10.1038/s41580-018-0008-z
  12. Single cell transcriptome analysis of human, marmoset and mouse embryos reveals common and divergent features of preimplantation development vol.145, pp.21, 2014, https://doi.org/10.1242/dev.167833
  13. Loss of maternal EED results in postnatal overgrowth vol.10, pp.None, 2018, https://doi.org/10.1186/s13148-018-0526-8
  14. The pivotal roles of the NOD-like receptors with a PYD domain, NLRPs, in oocytes and early embryo development† vol.101, pp.2, 2014, https://doi.org/10.1093/biolre/ioz098
  15. Exome sequencing identifies variants in FKBP4 that are associated with recurrent fetal loss in humans vol.28, pp.20, 2019, https://doi.org/10.1093/hmg/ddz203
  16. A framework for TRIM21-mediated protein depletion in early mouse embryos: recapitulation of Tead4 null phenotype over three days vol.20, pp.1, 2019, https://doi.org/10.1186/s12864-019-6106-2
  17. ZAR1 and ZAR2 are required for oocyte meiotic maturation by regulating the maternal transcriptome and mRNA translational activation vol.47, pp.21, 2014, https://doi.org/10.1093/nar/gkz863
  18. Listening to mother: Long‐term maternal effects in mammalian development vol.87, pp.4, 2014, https://doi.org/10.1002/mrd.23336
  19. Gene-based analyses of the maternal genome implicate maternal effect genes as risk factors for conotruncal heart defects vol.15, pp.6, 2014, https://doi.org/10.1371/journal.pone.0234357
  20. Characterizing transcriptome in female scallop Chlamys farreri provides new insights into the molecular mechanisms of reproductive regulation during ovarian development and spawn vol.758, pp.None, 2014, https://doi.org/10.1016/j.gene.2020.144967
  21. Investigating the role of BCAR4 in ovarian physiology and female fertility by genome editing in rabbit vol.10, pp.None, 2014, https://doi.org/10.1038/s41598-020-61689-6
  22. Effect of Interleukin-7 on In Vitro Maturation of Porcine Cumulus-Oocyte Complexes and Subsequent Developmental Potential after Parthenogenetic Activation vol.11, pp.3, 2014, https://doi.org/10.3390/ani11030741
  23. Reproductive Outcomes from Maternal Loss of Nlrp2 Are Not Improved by IVF or Embryo Transfer Consistent with Oocyte-Specific Defect vol.28, pp.7, 2014, https://doi.org/10.1007/s43032-020-00360-x
  24. Maternal Smc3 protects the integrity of the zygotic genome through DNA replication and mitosis vol.148, pp.24, 2014, https://doi.org/10.1242/dev.199800
  25. Maternal effect genes: Update and review of evidence for a link with birth defects vol.3, pp.1, 2014, https://doi.org/10.1016/j.xhgg.2021.100067