• Title/Summary/Keyword: Oocyte

Search Result 1,257, Processing Time 0.03 seconds

A Case Report about Herbal Medicine Treatment's a Single Woman Patient with a Low Level of AMH in Progress of Oocyte Cryopreservation (난소기능저하 미혼여성의 난자동결보존 시 한약복용을 병행한 증례보고)

  • Koh, Ji-Eun;Lyou, Myung-Sook
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.32 no.2
    • /
    • pp.119-128
    • /
    • 2019
  • Objectives: The aim of this case is to report the effects of herbal medicine on a single woman patient with a low level of AMH (anti-$M{\ddot{u}}llerian$ Hormone) in progress of Oocyte Cryopreservation. Methods: A patient with a low level of AMH had symptom of secondary amenorrhea. For preparing oocyte cryopreservation after a long time of secondary amenorrhea, she was treated by twice a day herb medication for 10 months. And we observed the effects of treatments by improvement of symptoms and following up endometrium ultrasonography. After oocyte cryopreservation, for maintaining her menstruation, she was also treated by twice a day herb medication for two and a half months. Results: After treatments, symptom of amenorrhea was improved and the thickness of endometrium was increased as well as AMH in progress of oocyte cryopreservation. So 20 oocytes could be cryopreserved. Conclusions: This case shows that herbal medicine can be a concurrent method for a single woman patient with secondary amenorrhea in progress of oocyte cryopreservation.

Ultrastructure of Oocytes During Oogenesis and Oocyte Degeneration Associated with Follicle Cells in Female Sinonovacula constricta(BIVALVIA: PHARIDAE) in Western Korea

  • Chung, Ee-Yung;Ko, Cheol-Hwan;Kang, Hee-Woong;Choi, Ki-Ho;Jun, Je-Cheon
    • Animal cells and systems
    • /
    • v.12 no.4
    • /
    • pp.313-319
    • /
    • 2008
  • The ultrastructure of oocytes during oogenesis and oocyte degeneration associated with follicle cells in female Sinonovacula constricta(Lamarck, 1818) were investigated by electron microscope observations. Ovarian follicles are surrounded by a matrix of vesicular connective tissue cells(VCT cells). VCT cells contain large quantities of glycogen particles and several lipid droplets in their cytoplasm. It is suggested that VCT cells act as a source of nutrients for vitellogenesis during oogenesis. In early vitellogenic oocytes, several coated vesicles, which appear at the basal region of the oocyte, lead to the formation of membrane-bound vesicles via endocytosis. The uptake of nutritive materials in coated vesicles formed by endocytosis appears through the formation of coated pits on the oolemma during vitellogenesis. During the late stage of oogenesis, yolk precursors(yolk granules), mitochondria and lipid droplets are present in the cytoplasm of late vitellogenic oocytes. In particular, proteinaceous yolk granules containing several different components are intermingles and form immature yolk granules. In the mature oocyte, small immature yolk granules are intermingled and form large mature yolk granules. Vitellogenesis occurs through a process of autosynthesis, involving combined activity of the Golgi complex, mitochondria and rough endoplasmic reticulum in the cytoplasm of vitellogenic oocytes. The process of heterosynthesis is where extraovarian precursors are incorporated into oocytes by endocytosis at the basal region of early vitellogenic oocytes before the formation of the vitelline coat. Follicle cells appear to play an important role in vitellogenesis and oocyte degeneration. The functions of attached follicle cells to the oocyte during oocyte degeneration are phagocytosis and digestion of phagosomes originating from oocyte degeneration. After digestion of phagosomes, it is assumed that the function of follicle cells can permit a transfer of yolk precursors necessary for vitellogenesis and allows for the accumulation of glycogen and lipid during oocyte degeneration, which can be employed by vitellogenic oocytes. Follicle cells of S. constricta may possess a lysosomal system for induction of oocyte breakdown and might resorb phagosomes in the cytoplasm for nutrient accumulation during oocyte degeneration.

Effects of follicle size and oocyte diameter on in vitro nuclear maturation of Korean native cattle oocyte (난포크기 및 난자직경과 관련된 한우 체외배양 난자의 핵성숙에 관한 연구)

  • Yong, Hwan-yul;Kim, Hyun-il;Lee, Eun-song;Lee, Byeong-chun;Hwang, Woo-suk
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.4
    • /
    • pp.929-939
    • /
    • 1996
  • The present study was undertaken to establish a relationship between bovine follicle size and oocyte diameter, compare the nuclear maturation competence of oocytes of different diameter groups and the nuclear maturation changes in Korean Native Cattle according to in vitro maturation period. To compare the relationship between follicle size and oocyte diameter, follicles were dissected, measured, and assigned to one of the following size categories($4{\geq}mm$, 3-4mm, 2-3mm, 1-2mm, and < 1mm), investigate the maturation competence in the different-sized oocytes, which were divided into three groups( < $110{\mu}m$, 110 - < $120{\mu}m$, and ${\geq}120{\mu}m$). Oocytes were cultured in the culture medium during 0, 6, 12, 18, and 24hrs, respectively, stained, and measured the nuclear maturation degree according to period. When compared the relationship between follicle size and intrafollicular oocyte diameter, oocyte diameters of three groups of ${\geq}3mm$ follicle-sized were significantly higher than < 3mm (p<0.01). After in vitro maturation, the rates reached to MI stage of < $110{\mu}m$ oocyte groups(25%) was higher than $110-120{\mu}m$ and ${\geq}120{\mu}m$ oocyte groups(11 and 10%) reached to the same stage(p<0.01), and the rates throughout MII stage of $110-120{\mu}m$ and ${\geq}120{\mu}m$ and < $110{\mu}m$(70 and 76%) groups were higher than < $110{\mu}m$(35%)(p<0.01). When nuclear maturation rates were measured according to period, < 6hr groups(7 and 10%) showed lower rates reached to MI than ${\geq}12hr$ groups(100%), 24hr groups(76%) revealed higher rates throughout MII than 18hr groups(40%). These results indicate that the preparation of oocyte for the production of in vitro fertilization embryos and nuclear transplantation ones could be adapted, as follicle increased up to appointed size there was a corresponding increase in oocyte diameter, and differences of nuclear maturation rate revealed according to oocyte diameter and maturation period.

  • PDF

Reduction of Mitochondrial Derived Superoxide by Mito-TEMPO Improves Porcine Oocyte Maturation In Vitro (Mito-TEMPO에 의한 미토콘드리아 유래 초과산화물의 감소가 돼지 난모세포 성숙에 미치는 영향)

  • Yang, Seul-Gi;Park, Hyo-Jin;Lee, Sang-Min;Kim, Jin-Woo;Kim, Min-Ji;Kim, In-Su;Jegal, Ho-Geun;Koo, Deog-Bon
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.10-19
    • /
    • 2019
  • Morphology of cumulus-oocyte-complexes (COCs) at germinal vesicle (GV) stage as one of the evaluation criteria for oocyte maturation quality after in vitro maturation (IVM) plays important roles on the meiotic maturation, fertilization and early embryonic development in pigs. When cumulus cells of COCs are insufficient, which is induced the low oocyte maturation rate by the increasing of reactive oxygen species (ROS) in porcine oocyte during IVM. The ROS are known to generate including superoxide and hydrogen peroxide from electron transport system of mitochondria during oocyte maturation in pigs. To regulate the ROS production, the cumulus cells is secreted the various antioxidant enzymes during IVM of porcine oocyte. Our previous study showed that Mito-TEMPO, superoxide specific scavenger, improves the embryonic developmental competence and blastocyst formation rate by regulating of mitochondria functions in pigs. However, the effects of Mito-TEMPO as a superoxide scavenger to help the anti-oxidant functions from cumulus cells of COCs on meiotic maturation during porcine oocyte IVM has not been reported. Here, we categorized experimental groups into two groups (Grade 1: G1; high cumulus cells and Grade 2: G2; low cumulus cells) by using hemocytometer. The meiotic maturation rate from G2 was significantly (p < 0.05) decreased (G1: $79.9{\pm}3.8%$ vs G2: $57.5{\pm}4.6%$) compared to G1. To investigate the production of mitochondria derived superoxide, we used the mitochondrial superoxide dye, Mito-SOX. Red fluorescence of Mito-SOX detected superoxide was significantly (p < 0.05) increased in COCs of G2 compared with G1. And, we examined expression levels of genes associated with mitochondrial antioxidant such as SOD1, SOD2 and PRDX3 using a RT-PCR in porcine COCs at 44 h of IVM. The mRNA levels of three antioxidant enzymes expression in COCs from G2 were significantly (p < 0.05) lower than COCs of G1. In addition, we investigated the anti-oxidative effects of Mito-TEMPO on meiotic maturation of porcine oocyte from G1 and G2. Meiotic maturation and mRNA levels of antioxidant enzymes were significantly (p < 0.05) recovered in G2 by Mito-TEMPO ($0.1{\mu}M$, MT) treatment (G2: $68.4{\pm}3.2%$ vs G2 + MT: $73.9{\pm}1.4%$). Therefore, our results suggest that reduction of mitochondria derived superoxide by Mito-TEMPO may improves the meiotic maturation in IVM of porcine oocyte.

Reduction of oocyte lipid droplets and meiotic failure due to biotin deficiency was not rescued by restoring the biotin nutritional status

  • Tsuji, Ai;Ikeda, Yuka;Murakami, Mutsumi;Kitagishi, Yasuko;Matsuda, Satoru
    • Nutrition Research and Practice
    • /
    • v.16 no.3
    • /
    • pp.314-329
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Oocyte lipid droplets play a crucial role in meiosis and embryo development. Biotin is associated with fatty acid synthesis and is the coenzyme for acetyl-CoA carboxylase (ACC). The effects of a biotin deficiency on the oocyte lipid metabolism remain unknown. This study examined the effects of a biotin deficiency and its replenishment on murine 1) oocyte lipid droplet levels, 2) ovary lipid metabolism, and 3) oocyte meiosis. MATERIALS/METHODS: Mice were divided into 3 groups: control, biotin deficient (BD), and recovery groups. The control and BD groups were fed a control diet or BD diet (0.004 or 0 g biotin/kg), respectively. The recovery group mice were fed a BD diet until day 21, and were then fed the control diet from days 22 to 64. This study then quantified the oocyte lipid droplet levels, assessed the oocyte mitochondrial function, and examined the ability of oocytes to undergo meiosis. Ovarian phosphorylated ACC (p-ACC), lipogenesis, β-oxidation, and ATP production-related genes were evaluated. RESULTS: The BD group showed a decrease in lipid droplets and mitochondrial membrane potential and increased p-ACC levels. In the recovery group, the hepatic biotin concentration, ovarian p-ACC levels, and mitochondrial membrane potential were restored to the control group levels. On the other hand, the quantity of lipid droplets in the recovery group was not restored to the control levels. Furthermore, the percentage of oocytes with meiotic abnormalities was higher in the recovery group than in the control group. CONCLUSIONS: A biotin deficiency reduced the oocyte lipid droplet levels by downregulating lipogenesis. The decreased lipid droplets and increased oocyte meiosis failure were not fully restored, even though the biotin nutrition status and gene expression of lipid metabolism was resumed. These results suggest that a biotin deficiency remains robust and can be long-lasting. Biotin might play a crucial role in maintaining the oocyte quality.

The Expression of Matrix Metalloproteinases Activated Differently on In-Vitro Maturation of oocytes Cytoplasm and Cumulus Cells in Bovine (소 난자의 체외성숙시 난구세포와 난세포질에서 다르게 발현되는 Matrix Metalloproteinases의 분석)

  • Kim, Sang-Hwan;Yoon, Jong-Taek
    • Journal of Embryo Transfer
    • /
    • v.33 no.3
    • /
    • pp.99-105
    • /
    • 2018
  • To determine the differences in the in-vitro ovum maturation process of bovine, we compared the expression of MMPs in these oocytes and cumulus cell throughout oocytes maturated. In an attempt to investigate the effect of MMP activation and inhibitors in total protein of cumulus cell and, oocytes during oocytes maturation, we examined and monitored the localization and expression of MMPs (MMP-2 and MMP-9), TIMPs (TIMP-2 and TIMP-3), as well as their expression profiles (Real-time PCR, Gelatin Zymography and ELISA). Our results that the bovine oocytes MMP-2 and MMP-9 level was significantly associated with the rate of maturity of oocytes (P<0.05). In cumulus cell, MMP-2 was highly expressed in all stages of the oocyte's maturation. The final oocytes maturation exhibited strong gelatinase activity. There was no significant correlation between cumulus cell MMP-9 and the maturation rate of oocytes. However, for the oocyte cytoplasm MMP-9 expression was significant correlation to the maturation oocytes. There was no significant correlation between cumulonimbus cells MMP-9 and oocyte maturation rates; however, for oocyte cytoplasm, MMP-9 expression was significantly correlated with mature oocyte. However, the TIMP-1 and TIMP-2 protein expression patterns are not correlated with the maturation rate of the oocyte. Our results suggest that MMP different expression pattern may regulate the morphological remodeling of oocyte's in the cumulus cell. Further, the MMP-2 expression has a strong relation with a higher maturation rate of the oocyte.

Oocyte maturity in repeated ovarian stimulation

  • Lee, Jae-Eun;Kim, Sang-Don;Jee, Byung-Chul;Suh, Chang-Suk;Kim, Seok-Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.38 no.4
    • /
    • pp.234-237
    • /
    • 2011
  • Objective: During stimulated IVF cycles, up to 15% of oocytes are recovered as immature. The purpose of this study was to investigate the trend of oocyte maturity in repeated ovarian stimulation for IVF. Methods: One hundred forty-eight patients were selected who underwent two consecutive IVF cycles using same stimulation protocol during 2008 to 2010. Ovarian stimulation was performed with FSH and human menopausal gonadotropin and flexible GnRH antagonist protocol in both cycles. Oocyte maturity was assessed according to presence of germinal vesicle (GV) and the first polar body. Immature oocyte was defined as GV stage or metaphase I oocyte (GV breakdown with no visible polar body) and cultured up to 48 hours. If matured, they were fertilized with ICSI. Results: Percentages of immature oocytes were 30.8% and 32.9% ($p$=0.466) and IVM rates of immature oocytes were 36.2% and 25.7% ($p$=0.077), respectively. A significant correlation was noted between percentage of immature oocytes in the two cycles (R=0.178, $p$=0.03). Women with >40% immaturity in both cycles (n=21) showed lower fertilization rate of $in$ $vivo$ matured oocytes (56.4% vs. 72.0%, $p$=0.005) and lower pregnancy rate (19.0% vs. 27.1%, $p$=0.454) after the second cycle when compared with women with <40% immaturity (n=70). In both groups, female age, number of total retrieved oocyte and embryos transferred were similar. Conclusion: In repeated ovarian stimulation cycles for IVF, the immature oocyte tended to be retrieved repetitively in consecutive IVF cycles.

Effects of Different Light Spectra on the Oocyte Maturation in Grass Puffer Takifugu niphobles

  • Choi, Song-Hee;Kim, Byeong-Hoon;Hur, Sung-Pyo;Lee, Chi-Hoon;Lee, Young-Don
    • Development and Reproduction
    • /
    • v.22 no.2
    • /
    • pp.175-182
    • /
    • 2018
  • In order to examine the effects of four different light spectra (white, red, green, and blue) on the oocyte maturation, the change of reproductive parameters, via brain-pituitary-gonad (BPG) axis in grass puffer, were investigated. After exposure four different light spectra for 7 weeks, the abundance of gonadotropin-releasing hormone (GnRH) mRNA which is a type of seabream (sbGnRH) and two different subunit of gonadotropin hormones mRNAs, follicle-stimulating hormone ($fsh{\beta}$) mRNA and luteinizing hormone ($lh{\beta}$) mRNA, were analyzed in the brain and pituitary. Histological analysis showed that the mature oocyte ratio in the green spectrum was higher than other light spectra-exposed groups. Gonadosomatic index (GSI) and oocyte developmental stage were also investigated in the gonad based on histological observations. GSI value with the presence of yolk stage oocytes was significantly increased in the green spectrum-exposed group when compared to that of the other light-exposed groups (white, red, and blue) (p<0.05). The abundances of sbGnRH mRNA and $fsh{\beta}$ mRNA in the green spectrum-exposed group were also significant higher than those of the other light spectra-exposed groups (p<0.05). These results indicate that the maturation of oocyte in grass puffer can be accelerated by exposure to the spectrum of green. To better understand the molecular mechanism for the maturation of oocyte in grass puffer, further study examining the relationship between oocyte development and its related genes is required.

Ecdysteroid Titer during Metamorphosis and the Effect of Ecdysteroid on Oocyte Develoment on Phormia regina (검정금파리의 변태기에 따른 엑디스테로이드와 난세포성숙에 미치는 엑디스테로이드의 효과)

  • 이종진
    • Korean journal of applied entomology
    • /
    • v.31 no.4
    • /
    • pp.371-378
    • /
    • 1992
  • The ecdysteroid titers of representive developmental stages of the blackblow fly, Phormia regina, were determined by radioimmunoassay and the effect of ecdysteroid on the oocyte maturation was investigated. Prior to every molts ecdysteroid levels began to increase sharply, suggesting ecdysteroid was the major component for egg-larval, larval-larval, and larval-pupal transformation. A difference in the levels of ecdysteroid between male and female was ob¬served during adult life span. Following the protein meal, ecdysteroid in the females increased rapidly to a maximum at 96 hr of age when terminal oocyte fully matured. Effect of ecdysteroid on oocyte development was determined for control and ecdysone-treated female flies after the liver-feeding. The growth of oocyte in the flies treated by $\mu$g of ecdysone, along with the control flies, was not facilitated. When the flies treated by 5 $\mu$g of ecdysone, however, duration of oocyte maturation was shorter than those of other two groups. This can be suggested that oocyte development in P. regina is due to the critical level of ecdysone.

  • PDF

Effect of Human Cord Serum on Oocyte Maturation and Cumulus Cell Expansion (신생아제대혈청이 난자성숙과 난구세포 분산에 미치는 영향)

  • Lee, Yu-Il;Park, Hyun-Jeong;Kwon, Young-Suk
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.25 no.1
    • /
    • pp.9-16
    • /
    • 1998
  • This study was performed to investigate the stimulating effect on oocyte maturation and cumulus cell expansion in TC199 media by human cord serum (HCS) supplementation. Immature mouse oocyte cumulus complexes (OCCs) were cultured in TC199 media supplemented with bovine serum albumin (BSA), HCS and human chorionic gonadotropin (hCG) instead of luteinizing hormone (LH) respectively, and the expression of cumulus expansion and oocyte maturation were observed. After 4hr and 24hr culture with or without OCCs, media containing 0.4% BSA, 10% HCS and 10 IV hCG respectively were collected and analyzed for changing concentrations of estradiol $(E_2)$, progesterone $(P_4)$, testosterone (T), and $PGF_{2\alpha}$. There were no elevation of $E_2$, T, and $PGF_{2\alpha}$ by OCCs culture, but minute elevation of $P_4$ level by 24hr OCCs culture in hCG supplementation (p=0.048). The stimulating pattern of cumulus expansion of OCCs by HCS and hCG supplementation was similar to our previously report using Ham's F-10 media, however oocyte maturation rates after 24hr OCCs culture in all media were increased by $20\sim30%$ compared to Ham's F-10 media. These results suggest that LH in HCS induce cumulus expansion probably by $P_4$ secretion of OCCs, and TC199 is efficient media for immature mouse oocyte maturation.

  • PDF