• 제목/요약/키워드: Ontology generation

검색결과 88건 처리시간 0.032초

온톨로지와 군집분석을 이용한 지하공간 정보모델 개발 (Development of Subsurface Spatial Information Model with Cluster Analysis and Ontology Model)

  • 이상훈
    • 한국지리정보학회지
    • /
    • 제13권4호
    • /
    • pp.170-180
    • /
    • 2010
  • 지하공간 개발의 증가에 따라 지층단면도 등 다양한 형태로 제공되는 지하공간 정보모델의 신뢰성이 요구되고 있다. 그러나 지반은 근본적으로 불확실하며, 이를 표현하는 정보모델도 자료부족, 해석표준 부재 등의 비통계적 요인과 외부환경 변수라는 통계적 요인으로 불확실성을 가진다. 따라서, 현재의 모델 생성은 고도로 훈련된 전문가에 의해 이뤄지고 있다. 본 연구는 지반공학 전문가의 경험과 지식에서 시맨틱을 추출하고, 이를 온톨로지 모델과 정보량으로 정량화하였다. 정량화한 온톨로지 모델은 군집분석의 클러스터간 거리계산에 적용하여 시맨틱을 고려한 군집분석 방법론을 제안하였다. 본 제안 방법을 실험지역에 적용한 결과 기존 K-Means 방법에 비해 전문가의 해석과 유사한 결과를 도출하였으며, 수작업으로는 어려운 대용량 데이터를 손쉽게 처리하고 3차원 GIS로 가시화가 가능하였다. 본 연구를 통해 지반공학 전문가의 도움 없이도, 그 경험을 고려하면서 대량의 지반정보 데이터를 효과적으로 처리하여 신뢰성 있는 지하공간 정보모델을 생성할 수 있을 것이다.

국가R&D정보에 대한 온톨로지 기반 지식맵 서비스 (Knowledge Map Service based on Ontology of Nation R&D Information)

  • 김선태;이원구
    • 디지털융복합연구
    • /
    • 제14권3호
    • /
    • pp.251-260
    • /
    • 2016
  • 과학기술 및 R&D 연구자는 선행 연구와 그 개발 결과에 대해 조사 분석하는데 많은 시간을 소비한다. 그리고 최근에는 효과적인 정보검색을 위해 시맨틱 웹을 비롯한 다양한 검색기술을 제공하고 있으며, 특히 온톨로지를 이용한 검색기술은 가장 효과적인 방법으로 알려져 있다. 이에, 본 연구는 국가 R&D정보(사업 및 과제정보), 그 사업 및 과제 수행을 통한 성과물(논문, 특허, 보고서, 기술이전 정보 등), 그리고 사업 및 과제와 연관된 정보(동향, 연구자, 용어 정보 등)를 연계하여 지식베이스(RDF-Triple)를 모델링하고, 이를 지식맵 서비스로 구현하여 연구자에게 국가 R&D정보를 한 눈에, 한 곳에서 국가 R&D정보를 살펴볼 수 있게 하는 것이다. 이를 통해, 정책가(정책입안자)에게는 R&D 전략 수립 과정 및 의사 결정을 지원할 수 있으며, 연구자에게는 선행 연구에 대한 조사 분석 시간 단축 및 새로운 연구 주제를 도출할 수 있는 기회를 제공할 수 있다.

시맨틱 라이브러리를 위한 아키텍처 참조 모델 (Architectural Reference Model for Semantic Library)

  • 한성국;이현실
    • 정보관리학회지
    • /
    • 제24권1호
    • /
    • pp.75-101
    • /
    • 2007
  • 기술 환경의 변화는 문헌정보시스템의 혁신적인 변화를 촉진하고 있다. 본 연구에서는 문헌 정보 체계기술과 인터넷 정보기술을 융합된 차세대 문헌 정보 시스템의 원형으로 시맨틱 라이브러리를 정의하고, 시맨틱 라이브러리의 기능적 요구사항과 아키텍처의 참조모델을 제시하였다. 시맨틱 라이브러리는 온톨로지와 메타데이터 기반의 의미적 상호 운용성과 통합을 실현하고 정보 자원의 개방과 공유 참여와 협업을 통하여 이용자 정보서비스를 혁신하는 체제이다. 또한 시맨틱 라이브러리는 FRBR의 논리구조를 근간으로 하여 서비스 지향 아키텍처로 구현됨으로써 효과적으로 시스템을 구축을 실현할 수 있다. 본 연구에서는 차세대 문헌정보 시스템의 모델로 6개 수평 계층과 3개 수직요소로 구성되는 시맨틱 라이브러리의 참조 모델을 제시하였다.

Choosing preferable labels for the Japanese translation of the Human Phenotype Ontology

  • Ninomiya, Kota;Takatsuki, Terue;Kushida, Tatsuya;Yamamoto, Yasunori;Ogishima, Soichi
    • Genomics & Informatics
    • /
    • 제18권2호
    • /
    • pp.23.1-23.6
    • /
    • 2020
  • The Human Phenotype Ontology (HPO) is the de facto standard ontology to describe human phenotypes in detail, and it is actively used, particularly in the field of rare disease diagnoses. For clinicians who are not fluent in English, the HPO has been translated into many languages, and there have been four initiatives to develop Japanese translations. At the Biomedical Linked Annotation Hackathon 6 (BLAH6), a rule-based approach was attempted to determine the preferable Japanese translation for each HPO term among the candidates developed by the four approaches. The relationship between the HPO and Mammalian Phenotype translations was also investigated, with the eventual goal of harmonizing the two translations to facilitate phenotype-based comparisons of species in Japanese through cross-species phenotype matching. In order to deal with the increase in the number of HPO terms and the need for manual curation, it would be useful to have a dictionary containing word-by-word correspondences and fixed translation phrases for English word order. These considerations seem applicable to HPO localization into other languages.

Building Intelligent User Interface Agent for Semantically Reformulating User Query in Medicine

  • Lim, Chae-Myung;Chu, Sung-Joon;Lee, Dong-Hoon;Park, Duck-Whan;Park, Tae-Young;Yang, Jung-Jin
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2003년도 Proceeding
    • /
    • pp.57-64
    • /
    • 2003
  • Achieving the beneficiary goal of recent discovery in human genome project still needs a way to retrieve and analyze the exponentially expanding bio-related information. Research on bio-related fields naturally applies knowledge discovered to the current problem and make inferences to extract new information where shared concepts and data containing information need to be defined and used in a coherent way. In such a professional domain, while the need to help users reduce their work and to improve search results has been emerged. methods for systematic retrieval and adequate exchange of relevant information are still in their infancy. The design of our system aims at improving the quality of information retrieval in a professional domain by utilizing both corpus-based and concept-based ontology. Meta-rules of helping users to make an adequate query are formed into an ontology in the domain. The integration of those knowledge permits the system to retrieve relevant information in a more semantic and systematic fashion. This work mainly describes the query models with details of GUI and a secondary query generation of the system.

  • PDF

BINGO: Biological Interpretation Through Statistically and Graph-theoretically Navigating Gene $Ontology^{TM}$

  • Lee, Sung-Geun;Yang, Jae-Seong;Chung, Il-Kyung;Kim, Yang-Seok
    • Molecular & Cellular Toxicology
    • /
    • 제1권4호
    • /
    • pp.281-283
    • /
    • 2005
  • Extraction of biologically meaningful data and their validation are very important for toxicogenomics study because it deals with huge amount of heterogeneous data. BINGO is an annotation mining tool for biological interpretation of gene groups. Several statistical modeling approaches using Gene Ontology (GO) have been employed in many programs for that purpose. The statistical methodologies are useful in investigating the most significant GO attributes in a gene group, but the coherence of the resultant GO attributes over the entire group is rarely assessed. BINGO complements the statistical methods with graph-theoretic measures using the GO directed acyclic graph (DAG) structure. In addition, BINGO visualizes the consistency of a gene group more intuitively with a group-based GO subgraph. The input group can be any interesting list of genes or gene products regardless of its generation process if the group is built under a functional congruency hypothesis such as gene clusters from DNA microarray analysis.

BIM과 온톨로지를 활용한 표준내역항목 추론 자동화 (Automatic Inference of Standard BOQ(Bill of Quantities) Items using BIM and Ontology)

  • 이슬기;김가람;유정호
    • 한국건설관리학회논문집
    • /
    • 제13권3호
    • /
    • pp.99-108
    • /
    • 2012
  • BIM(Building Information Model) 기반으로 기본설계를 수행한 경우에도 개략적인 설계 정보만 제공되므로, 내역작성에 필요한 충분한 정보를 설계도면으로부터 확보하는 것이 어렵다. 하지만 대부분 BIM기반 공사비산정 관련 연구들은 물량산출 자동화 또는 BIM 기반 물량산출결과의 정확도 향상을 위한 방안 제시하는 것이 대부분이며, 건설사업의 공사비산정에서 요구되고 있는 표준품셈 및 일위대가에 대한 고려가 미흡하다. 따라서 본 연구에서는 BIM 활용의 장점을 활용하고 여기에 온톨로지 기술을 접목하여, BIM 기반의 기본설계 정보로부터 내역서 생성에 필요한 작업내역을 자동으로 추출하는 프로세스를 제시한다. 이 프로세스를 적용할 경우, BIM 정보의 활용성이 더욱 향상될 것으로 기대되며, 견적자의 자의적 판단이 개입되던 문제를 해결하여 동일한 BIM이라면 동일한 견적결과를 얻을 수 있는 일관성 있는 내역작성 방법 개발의 기초가 될 것으로 기대된다.

온톨로지와 텍스트 마이닝 기반 지능형 역사인물 검색 서비스 (Ontology and Text Mining-based Advanced Historical People Finding Service)

  • 정도헌;황명권;조민희;정한민;윤소영;김경선;김평
    • 인터넷정보학회논문지
    • /
    • 제13권5호
    • /
    • pp.33-43
    • /
    • 2012
  • 시맨틱 웹 기술은 특정 개체를 중심으로 의미적 연관 관계를 생성하고 연관 관계를 이용해서 다양한 지능형 정보 서비스를 구축하는데 활용되며, 텍스트 마이닝 기술은 비정형 데이터를 대상으로 의미 분석을 통해서 의미적 연관 관계를 생성하는데 활용될 수 있다. 본 연구에서는 역사인물을 중심으로 온톨로지 스키마, 인스턴스를 생성하는 가이드라인, 인스턴스 생성, 동명이인 해소를 위한 텍스트 마이닝, 추론을 활용한 지능화된 역사인물 검색서비스를 제안한다. 역사분야 전문가들이 생성한 역사적 사건, 기관, 인물 중심의 연관 관계와 국사편찬위원회에서 보유한 다양한 문헌들 간의 연계를 통해, 사용자들의 정보접근성을 향상시킴과 동시에 관계 정보에 기반한 새로운 역사인물 검색 서비스를 제안하였다. 새로운 역사인물 검색 서비스는 인물간의 소셜 네트워크를 사용하여 역사문헌에 나타난 동명이인을 해소함으로써 보다 정확한 검색서비스를 제공하는 것은 물론, 역사 인물 시소러스를 포함한 다양한 외부 정보와의 연계를 통해서 역사인물에 대한 고부가 정보를 제공하고 있다.

시맨틱 갭을 줄이기 위한 딥러닝과 행위 온톨로지의 결합 기반 이미지 검색 (Image retrieval based on a combination of deep learning and behavior ontology for reducing semantic gap)

  • 이승;정혜욱
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제9권11호
    • /
    • pp.1133-1144
    • /
    • 2019
  • 최근 스마트 기기의 발전으로 인터넷상에 존재하는 이미지 데이터의 양이 급속하게 증가하는 상황에서 효과적인 이미지 검색을 위한 다양한 방법들이 연구되고 있다. 기존의 이미지 검색 방법들은 이미지에 존재하는 물체들을 단순하게 검출하여 각 물체들의 라벨 정보에 근거한 검색을 수행하기 때문에 사용자가 원하는 이미지와 검색 결과로 얻은 이미지 간에 의미적 차이인 시맨틱 갭(Semantic Gap)이 발생된다. 이미지 검색에서 발생하는 시맨틱 갭을 줄이기 위해, 본 논문에서는 딥러닝 기반의 다중 객체 분류 모듈과 사람의 행위를 분류하는 모듈을 연결하고, 이 모듈들에 행위 온톨로지를 결합하였다. 즉, 딥러닝과 행위 온톨로지의 결합을 기반으로 객체들 간의 연관성을 고려한 이미지 검색 시스템을 제안한다. 이미지에 포함된 동적인 행위를 고려하기 위해 Walking과 Running 데이터를 이용하여 실험한 결과를 분석하였다. 제안한 방법은 향후 이미지 검색 결과의 정확도를 높일 수 있는 영상의 자동 주석 생성 연구에 확장하여 적용할 수 있다.

온톨로지 기반의 보일러 셧다운 절차 생성 : 지식표현 및 훈련시나리오 활용 (An Ontology-based Generation of Operating Procedures for Boiler Shutdown : Knowledge Representation and Application to Operator Training)

  • 박명남;김태옥;이봉우;신동일
    • 한국가스학회지
    • /
    • 제21권4호
    • /
    • pp.47-61
    • /
    • 2017
  • 대규모 플랜트에서 조업자 안전훈련 모델의 전제조건은 조업에 관련된 다양한 위험의 상세분석 및 지식표현으로 얻어진 운영절차의 범용성과 정확성이다. 본 연구에서는 조업절차의 생성을 위해 인공지능 플래닝 기법을 고려하여 조업자의 일반행위와 조치행위 그리고 기술용어 등을 분류하고, 지식의 공유 및 재사용을 고려하여 플랜트의 운영과정과 관련된 조업행위 및 용어의 확장을 지식표현 온톨로지 형태로 정의하였다. 또한 조업의 일반적인 행위의 구체화를 위해 Hierarchical Task Network (HTN)기반의 행위계획을 적용하여 목표와 실행이 가능한 수준까지 분할하여 여러 상황에 따른 절차를 생성하도록 설계하였다. 이후 실제 보일러 설비의 사례연구를 통해 조업조건과 운전상태 그리고 장치들 간의 운전목적에 따라 구성설비의 역할을 분류하고, 비상정지절차를 생성하였으며, 제안한 방법의 실제 플랜트 적용 가능성을 확인하였다. 체계적인 지식표현에 기초한 지식베이스 구축은 일반적인 플랜트 운영절차 및 조업자 안전훈련 시나리오의 생성에도 활용이 가능할 것이며, 향후 자동생성 등에도 활용될 수 있을 것으로 판단된다.