• Title/Summary/Keyword: Ontology Rule

Search Result 127, Processing Time 0.028 seconds

A method for automatic EPC code conversion based on ontology methodology (온톨로지 기반 EPC 코드 자동 변환 방법)

  • Noh, Young-Sik;Byun, Yung-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.3
    • /
    • pp.452-460
    • /
    • 2008
  • ALE-complient RFID middleware system receives EPC code data from reader devices and converts the data into URN format data internally. After filtering and grouping, the system sends the resulting URN code to application and(or) users. Meanwhile, not only the types of EPC code are very diverse, but also another new kinds of EPC code can be emerged in the future. Therefore, a method to process all kinds of EPC code effectively is required by RFID middleware. In this paper, a method to process various kinds of EPC code acquired from RFID reader devices in ALE-complient RFID middleware is proposed. Especially, we propose an approach using ontology technology to process not only existing EPC code but also newly defined code in the future. That is, we build an ontology of conversion rules for each EPC data type to effectively convert EPC data into URL format data. In this case, we can easily extend RFID middleware to process a new EPC code data by adding a conversion rule ontology for the code.

An effective automated ontology construction based on the agriculture domain

  • Deepa, Rajendran;Vigneshwari, Srinivasan
    • ETRI Journal
    • /
    • v.44 no.4
    • /
    • pp.573-587
    • /
    • 2022
  • The agricultural sector is completely different from other sectors since it completely relies on various natural and climatic factors. Climate changes have many effects, including lack of annual rainfall and pests, heat waves, changes in sea level, and global ozone/atmospheric CO2 fluctuation, on land and agriculture in similar ways. Climate change also affects the environment. Based on these factors, farmers chose their crops to increase productivity in their fields. Many existing agricultural ontologies are either domain-specific or have been created with minimal vocabulary and no proper evaluation framework has been implemented. A new agricultural ontology focused on subdomains is designed to assist farmers using Jaccard relative extractor (JRE) and Naïve Bayes algorithm. The JRE is used to find the similarity between two sentences and words in the agricultural documents and the relationship between two terms is identified via the Naïve Bayes algorithm. In the proposed method, the preprocessing of data is carried out through natural language processing techniques and the tags whose dimensions are reduced are subjected to rule-based formal concept analysis and mapping. The subdomain ontologies of weather, pest, and soil are built separately, and the overall agricultural ontology are built around them. The gold standard for the lexical layer is used to evaluate the proposed technique, and its performance is analyzed by comparing it with different state-of-the-art systems. Precision, recall, F-measure, Matthews correlation coefficient, receiver operating characteristic curve area, and precision-recall curve area are the performance metrics used to analyze the performance. The proposed methodology gives a precision score of 94.40% when compared with the decision tree(83.94%) and K-nearest neighbor algorithm(86.89%) for agricultural ontology construction.

Building Domain Ontology through Concept and Relation Classification (개념 및 관계 분류를 통한 분야 온톨로지 구축)

  • Huang, Jin-Xia;Shin, Ji-Ae;Choi, Key-Sun
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.9
    • /
    • pp.562-571
    • /
    • 2008
  • For the purpose of building domain ontology, this paper proposes a methodology for building core ontology first, and then enriching the core ontology with the concepts and relations in the domain thesaurus. First, the top-level concept taxonomy of the core ontology is built using domain dictionary and general domain thesaurus. Then, the concepts of the domain thesaurus are classified into top-level concepts in the core ontology, and relations between broader terms (BT) - narrower terms (NT) and related terms (RT) are classified into semantic relations defined for the core ontology. To classify concepts, a two-step approach is adopted, in which a frequency-based approach is complemented with a similarity-based approach. To classify relations, two techniques are applied: (i) for the case of insufficient training data, a rule-based module is for identifying isa relation out of non-isa ones; a pattern-based approach is for classifying non-taxonomic semantic relations from non-isa. (ii) For the case of sufficient training data, a maximum-entropy model is adopted in the feature-based classification, where k-NN approach is for noisy filtering of training data. A series of experiments show that performances of the proposed systems are quite promising and comparable to judgments by human experts.

Choosing preferable labels for the Japanese translation of the Human Phenotype Ontology

  • Ninomiya, Kota;Takatsuki, Terue;Kushida, Tatsuya;Yamamoto, Yasunori;Ogishima, Soichi
    • Genomics & Informatics
    • /
    • v.18 no.2
    • /
    • pp.23.1-23.6
    • /
    • 2020
  • The Human Phenotype Ontology (HPO) is the de facto standard ontology to describe human phenotypes in detail, and it is actively used, particularly in the field of rare disease diagnoses. For clinicians who are not fluent in English, the HPO has been translated into many languages, and there have been four initiatives to develop Japanese translations. At the Biomedical Linked Annotation Hackathon 6 (BLAH6), a rule-based approach was attempted to determine the preferable Japanese translation for each HPO term among the candidates developed by the four approaches. The relationship between the HPO and Mammalian Phenotype translations was also investigated, with the eventual goal of harmonizing the two translations to facilitate phenotype-based comparisons of species in Japanese through cross-species phenotype matching. In order to deal with the increase in the number of HPO terms and the need for manual curation, it would be useful to have a dictionary containing word-by-word correspondences and fixed translation phrases for English word order. These considerations seem applicable to HPO localization into other languages.

A Study on the Performance Evaluation of Semantic Retrieval Engines (시맨틱검색엔진의 성능평가에 관한 연구)

  • Noh, Young-Hee
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.22 no.2
    • /
    • pp.141-160
    • /
    • 2011
  • This study suggested knowledge base and search engine for the libraries that have the largescaled data. For this purpose, 3 components of knowledge bases(triple ontology, concept-based knowledge base, inverted file) were constructed and 3 search engines(search engine JENA for rule-based reasoning, Concept-based search engine, keyword-based Lucene retrieval engine) were implemented to measure their performance. As a result, concept-based retrieval engine showed the best performance, followed by ontology-based Jena retrieval engine, and then by a normal keyword search engine.

A study on the Robust and Systolic Topology for the Resilient Dynamic Multicasting Routing Protocol

  • Lee, Kang-Whan;Kim, Sung-Uk
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.255-260
    • /
    • 2008
  • In the recently years, there has been a big interest in ad hoc wireless network as they have tremendous military and commercial potential. An Ad hoc wireless network is composed of mobile computing devices that use having no fixed infrastructure of a multi-hop wireless network formed. So, the fact that limited resource could support the network of robust, simple framework and energy conserving etc. In this paper, we propose a new ad hoc multicast routing protocol for based on the ontology scheme called inference network. Ontology knowledge-based is one of the structure of context-aware. And the ontology clustering adopts a tree structure to enhance resilient against mobility and routing complexity. This proposed multicast routing protocol utilizes node locality to be improve the flexible connectivity and stable mobility on local discovery routing and flooding discovery routing. Also attempts to improve route recovery efficiency and reduce data transmissions of context-awareness. We also provide simulation results to validate the model complexity. We have developed that proposed an algorithm have design multi-hierarchy layered networks to simulate a desired system.

A Framework of Internet Shopping Decision Making Based on Semantic Web Constraint Language (의미망 제약식언어를 기반으로 한 인터넷 쇼핑 의사결정 틀)

  • Lee, Myung-Jin;Kim, Hak-Jin;Kim, Woo-Ju
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.33 no.3
    • /
    • pp.29-42
    • /
    • 2008
  • Semantic Web society initially focused only on data but has gradually moved toward knowledge. Recently rule beyond ontology has emerged as a key element of the Semantic Web. All of these activities are obviously aiming at making data and knowledge on the Web sharable and reusable between various entities around the world. If one of ultimate visions of the Semantic Web is to increase human's decision making quality assisted by machines, there is a missing but important part to be shared and reused. It is knowledge about constraints on data and concepts represented by ontology which should be emphasized more. In this paper, we propose Semantic Web Constraint Language (SWCL) based on OWL and show how effective SWCL can be in representing and solving an internet shopper's decision making problem by an implementation of a shopping agent in the Semantic Web environment.

The Ontology Modeling for Situation-Awareness Framework in Ubiquitous Environment (유비쿼터스 환경의 상황인식 프레임워크를 위한 온톨로지 모델링)

  • Lee, Gi-Cheol;Lee, Ji-Hyeong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.224-227
    • /
    • 2006
  • 온톨로지는 뛰어난 확장성과 다양한 표현력 등 많은 장점을 갖고 있기 때문에 이를 이용한 유비쿼터스 환경 구축이 최근 제기되고 있고 이러한 유비쿼터스 환경에서의 다양한 정보(컨텍스트)들을 수집하고 분석하기 위해서 상황인식 시스템의 필요성이 제기되고 있다. 이러한 이유로 몇몇 프로젝트에서 온톨로지를 이용하여 상황인식 미들웨어를 제작하였지만 이러한 기존 미들웨어의 온톨로지 모델은 추론과 학습 서비스에 대한 고려가 부족하였고 또한 W3C에서 최근 제안한 SWRL(Semantic Web Rule Language)[1]이 고려되지 않았다. 그러므로 본 논문에서는 유비쿼터스 환경에서의 상황인식 프레임워크의 학습 및 추론서비스 향상을 위해 컨텍스트의 타입을 정의하였고 또한 SWRL을 이용하여 규칙을 표현할 수 있도록 온톨로지를 모델링 하였다.

  • PDF

Syntactic and semantic information extraction from NPP procedures utilizing natural language processing integrated with rules

  • Choi, Yongsun;Nguyen, Minh Duc;Kerr, Thomas N. Jr.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.866-878
    • /
    • 2021
  • Procedures play a key role in ensuring safe operation at nuclear power plants (NPPs). Development and maintenance of a large number of procedures reflecting the best knowledge available in all relevant areas is a complex job. This paper introduces a newly developed methodology and the implemented software, called iExtractor, for the extraction of syntactic and semantic information from NPP procedures utilizing natural language processing (NLP)-based technologies. The steps of the iExtractor integrated with sets of rules and an ontology for NPPs are described in detail with examples. Case study results of the iExtractor applied to selected procedures of a U.S. commercial NPP are also introduced. It is shown that the iExtractor can provide overall comprehension of the analyzed procedures and indicate parts of procedures that need improvement. The rich information extracted from procedures could be further utilized as a basis for their enhanced management.

Combining Multi-Criteria Analysis with CBR for Medical Decision Support

  • Abdelhak, Mansoul;Baghdad, Atmani
    • Journal of Information Processing Systems
    • /
    • v.13 no.6
    • /
    • pp.1496-1515
    • /
    • 2017
  • One of the most visible developments in Decision Support Systems (DSS) was the emergence of rule-based expert systems. Hence, despite their success in many sectors, developers of Medical Rule-Based Systems have met several critical problems. Firstly, the rules are related to a clearly stated subject. Secondly, a rule-based system can only learn by updating of its rule-base, since it requires explicit knowledge of the used domain. Solutions to these problems have been sought through improved techniques and tools, improved development paradigms, knowledge modeling languages and ontology, as well as advanced reasoning techniques such as case-based reasoning (CBR) which is well suited to provide decision support in the healthcare setting. However, using CBR reveals some drawbacks, mainly in its interrelated tasks: the retrieval and the adaptation. For the retrieval task, a major drawback raises when several similar cases are found and consequently several solutions. Hence, a choice for the best solution must be done. To overcome these limitations, numerous useful works related to the retrieval task were conducted with simple and convenient procedures or by combining CBR with other techniques. Through this paper, we provide a combining approach using the multi-criteria analysis (MCA) to help, the traditional retrieval task of CBR, in choosing the best solution. Afterwards, we integrate this approach in a decision model to support medical decision. We present, also, some preliminary results and suggestions to extend our approach.