• Title/Summary/Keyword: Ontology Ranking

Search Result 18, Processing Time 0.019 seconds

Ontology Selection Ranking Model based on Semantic Similarity Approach (의미적 유사성에 기반한 온톨로지 선택 랭킹 모델)

  • Oh, Sun-Ju;Ahn, Joong-Ho;Park, Jin-Soo
    • The Journal of Society for e-Business Studies
    • /
    • v.14 no.2
    • /
    • pp.95-116
    • /
    • 2009
  • Ontologies have provided supports in integrating heterogeneous and distributed information. More and more ontologies and tools have been developed in various domains. However, building ontologies requires much time and effort. Therefore, ontologies need to be shared and reused among users. Specifically, finding the desired ontology from an ontology repository will benefit users. In the past, most of the studies on retrieving and ranking ontologies have mainly focused on lexical level supports. In those cases, it is impossible to find an ontology that includes concepts that users want to use at the semantic level. Most ontology libraries and ontology search engines have not provided semantic matching capability. Retrieving an ontology that users want to use requires a new ontology selection and ranking mechanism based on semantic similarity matching. We propose an ontology selection and ranking model consisting of selection criteria and metrics which are enhanced in semantic matching capabilities. The model we propose presents two novel features different from the previous research models. First, it enhances the ontology selection and ranking method practically and effectively by enabling semantic matching of taxonomy or relational linkage between concepts. Second, it identifies what measures should be used to rank ontologies in the given context and what weight should be assigned to each selection measure.

  • PDF

Semantic search of web documents using ontology (온톨로지를 이용한 웹문서의 시맨틱 검색)

  • Oh, Sung-Kyun;Kim, Byung-Gon
    • Journal of Digital Contents Society
    • /
    • v.15 no.5
    • /
    • pp.603-612
    • /
    • 2014
  • To provide efficient and correct search results, ontology which use the structure of information, is considered as a main mechanism in the semantic web. Therefore, recent research in information retrieval and data construction have emphasized the use of ontologies as a data representation and search mechanism. In this paper, we propose a semantic search method using ontology to improve search ability in web environment. Ontology and knowledge base is used to represent semantic meaning of the data and provide related web documents and facts as results. Also, search result ranking mechanism is proposed. The mechanism use cardinality of the keyword in the contents and structural information of ontology. Experimental results with several query processing indicate that different coefficient value in the expression gives different results in sample ontology system and we propose appropriate values of the coefficient.

Service Provider Ranking Based on Visual Media Ontology (시각 미디어 온톨로지에 기반한 서비스 제공자 랭킹)

  • Min, Young-Kun;Lee, Bog-Ju
    • The KIPS Transactions:PartB
    • /
    • v.15B no.4
    • /
    • pp.315-322
    • /
    • 2008
  • It is important to retrieve effectively the visual media such as pictures and video in the internet, especially to the application areas such as electronic art museum, e-commerce, and internet shopping malls. It is also needed in these areas to have content-based or even semantic-based multimedia retrieval instead of simple keyword-based retrieval. In our earlier research, we proposed a semantic-based visual media retrieval framework for the effective retrieval of the visual media from the internet. It uses visual media metadata and ontology based on the web service to achieve the semantic-based retrieval. In this research, there are more than one visual media service providers and one central service broker. As a preliminary step to the visual media data retrieval, a method is proposed to retrieve the service providers effectively. The method uses the structure of the ontology tree to obtain the providers and their rankings. It also uses the size of sub nodes and child nodes in the tree. It measures the rankings of providers more effectively than previous method. The experimental results show the accuracy of the method while keeping compatible speed against the existing method.

Keyword Search and Ranking Methods on Semantic Web Documents (시맨틱 웹 문서에 대한 키워드 검색 및 랭킹 기법)

  • Kim, Youn-Hee;Oh, Sung-Kyun
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.86-93
    • /
    • 2012
  • In this paper, we propose keyword search and ranking methods for OWL documents that describe metadata and ontology on the Semantic Web. The proposed keyword search method defines a unit of keyword search result as an information resource and expands a scope of query keyword to names of class and property or literal data. And we reflected derived information by inference in the keyword search by considering the elements of OWL documents such as hierarchical relationship of classes or properties and equal relationship of classes. In addition, our method can search a large number of information resources that are relevant to query keywords because of information resources indirectly associated with query keywords through semantic relationship. Our ranking method can improve user's search satisfaction because of involving a variety of factors in the ranking by considering the characteristics of OWL. The proposed methods can be used to retrieve digital contents, such as broadcast programs.

RDF 지식 베이스의 자원 중요도 계산 알고리즘에 대한 연구

  • No, Sang-Gyu;Park, Hyeon-Jeong;Park, Jin-Su
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.05a
    • /
    • pp.123-137
    • /
    • 2007
  • The information space of semantic web comprised of various resources, properties, and relationships is more complex than that of WWW comprised of just documents and hyperlinks. Therefore, ranking methods in the semantic web should be modified to reflect the complexity of the information space. In this paper we propose a method of ranking query results from RDF(Resource Description Framework) knowledge bases. The ranking criterion is the importance of a resource computed based on the link structure of the RDF graph. Our method is expected to solve a few problems in the prior research including the Tightly-Knit Community Effect. We illustrate our methods using examples and discuss directions for future research.

  • PDF

Identifying Statistically Significant Gene-Sets by Gene Set Enrichment Analysis Using Fisher Criterion (Fisher Criterion을 이용한 Gene Set Enrichment Analysis 기반 유의 유전자 집합의 검출 방법 연구)

  • Kim, Jae-Young;Shin, Mi-Young
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.4
    • /
    • pp.19-26
    • /
    • 2008
  • Gene set enrichment analysis (GSEA) is a computational method to identify statistically significant gene sets showing significant differences between two groups of microarray expression profiles and simultaneously uncover their biological meanings in an elegant way by employing gene annotation databases, such as Cytogenetic Band, KEGG pathways, gene ontology, and etc. For the gone set enrichment analysis, all the genes in a given dataset are first ordered by the signal-to-noise ratio between the groups and then further analyses are proceeded. Despite of its impressive results in several previous studies, however, gene ranking by the signal-to-noise ratio makes it difficult to consider highly up-regulated genes and highly down-regulated genes at the same time as the candidates of significant genes, which possibly reflect certain situations incurred in metabolic and signaling pathways. To deal with this problem, in this article, we investigate the gene set enrichment analysis method with Fisher criterion for gene ranking and also evaluate its effects in Leukemia related pathway analyses.

A Model for Ranking Semantic Associations in a Social Network (소셜 네트워크에서 관계 랭킹 모델)

  • Oh, Sunju
    • The Journal of Society for e-Business Studies
    • /
    • v.18 no.3
    • /
    • pp.93-105
    • /
    • 2013
  • Much Interest has focused on social network services such as Facebook and Twitter. Previous research conducted on social network often emphasized the architecture of the social network that is the existence of path between any objects on network and the centrality of the object in the network. However, studies on the semantic association in the network are rare. Studies on searching semantic associations between entities are necessary for future business enhancements. In this research, the ontology based social network analysis is performed. A new method to search and rank relation sequences that consist of several relations between entities is proposed. In addition, several heuristics to measure the strength of the relation sequences are proposed. To evaluate the proposed method, an experiment was performed. A group of social relationships among the university and organizations are constructed. Some social connections are searched using the proposed ranking method. The proposed method is expected to be used to search the association among entities in ontology based knowledge base.

Personalized Search Service in Semantic Web (시멘틱 웹 환경에서의 개인화 검색)

  • Kim, Je-Min;Park, Young-Tack
    • The KIPS Transactions:PartB
    • /
    • v.13B no.5 s.108
    • /
    • pp.533-540
    • /
    • 2006
  • The semantic web environment promise semantic search of heterogeneous data from distributed web page. Semantic search would resuit in an overwhelming number of results for users is increased, therefore elevating the need for appropriate personalized ranking schemes. Culture Finder helps semantic web agents obtain personalized culture information. It extracts meta data for each web page(culture news, culture performance, culture exhibition), perform semantic search and compute result ranking point to base user profile. In order to work efficient, Culture Finder uses five major technique: Machine learning technique for generating user profile from user search behavior and meta data repository, an efficient semantic search system for semantic web agent, query analysis for representing query and query result, personalized ranking method to provide suitable search result to user, upper ontology for generating meta data. In this paper, we also present the structure used in the Culture Finder to support personalized search service.

A Scheduling Algorithm using The Priority of Broker for Improving The Performance of Semantic Web-based Visual Media Retrieval Framework (분산시각 미디어 검색 프레임워크의 성능향상을 위한 브로커 서버 우선순위를 이용한 라운드 로빈 스케줄링 기법)

  • Shim, Jun-Yong;Won, Jae-Hoon;Kim, Se-Chang;Kim, Jung-Sun
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.1
    • /
    • pp.22-32
    • /
    • 2008
  • To overcome the weakness of the image retrieval system using the existing Ontology and the distributed image based on the database having a simple structure, HERMES was suggested to ensure the self-control of various image suppliers and support the image retrieval based on semantic, the mentioned framework could not solve the problems which are not considered the deterioration in the capacity and scalability when many users connect to broker server simultaneously. In this paper the tables are written which in the case numerous users connect at the same time to the supply analogous level of services without the deterioration in the capacity installs Broker servers and then measures the performance time of each inner Broker Component through Monitoring System and saved and decides the ranking in saved data. As many Query performances are dispersed into several Servers User inputted from the users Interface with reference to Broker Ranking Table, Load Balancing system improving reliability in capacity is proposed. Through the experiment, the scheduling technique has proved that this schedule is faster than existing techniques.

Preference-based search technology for the user query semantic interpretation (사용자 질의 의미 해석을 위한 선호도 기반 검색 기술)

  • Jeong, Hoon;Lee, Moo-Hun;Do, Hana;Choi, Eui-In
    • Journal of Digital Convergence
    • /
    • v.11 no.2
    • /
    • pp.271-277
    • /
    • 2013
  • Typical semantic search query for Semantic search promises to provide more accurate result than present-day keyword matching-based search by using the knowledge base represented logically. Existing keyword-based retrieval system is Preference for the semantic interpretation of a user's query is not the meaning of the user keywords of interconnect, you can not search. In this paper, we propose a method that can provide accurate results to meet the user's search intent to user preference based evaluation by ranking search. The proposed scheme is Integrated ontology-based knowledge base built on the formal structure of the semantic interpretation process based on ontology knowledge base system.