• Title/Summary/Keyword: Ontology Modeling

Search Result 192, Processing Time 0.027 seconds

Evaluating Service Description to Guarantee Quality of U-service Ontology

  • Lee, Mee-Yeon;Lee, Jung-Won;Kim, Kyung-Ah;Park, Seung-Soo
    • Journal of Information Processing Systems
    • /
    • v.7 no.2
    • /
    • pp.287-298
    • /
    • 2011
  • Efficient service description and modeling methodologies are essential for dynamic service composition to provide autonomous services for users in ubiquitous computing environments. In our previous research, we proposed a 'u-service' ontology which is an abstract and structured concept for device operations in ubiquitous environments. One of the problems that we faced during the design process was that there are not enough standards to analyze the effectiveness of a u-service ontology. In this paper, we propose a quality evaluation model to facilitate the design process of a uservice ontology. We extract modeling goals and evaluation indicators based on the uservice description specification. We also present quality metrics to quantify each of the design properties. The experiment result of the proposed quality model shows that we can use it to analyze the design of u-service ontology from various angles. Also, it shows that the model can provide a guideline, and offer appropriate recommendations for improvements.

Sharing CAD Models Based on Feature Ontology of Commands History

  • Seo, Tae-Sul;Lee, Yoon-Sook;Cheon, Sang-Uk;Han, Soon-Hung;Patil, Lalit;Dutta, Debasish
    • International Journal of CAD/CAM
    • /
    • v.5 no.1
    • /
    • pp.39-47
    • /
    • 2005
  • Different CAx systems are being utilized throughout the product lifecycle due to the practical reasons in the supply chain and design processes. One of the major problems facing enterprises of today is how to share and exchange data among heterogeneous applications. Since different software applications use different terminologies, it is difficult to share and exchange the product data with internal and external partners. This paper presents a method to enhance the CAD model interoperability based on feature ontology. The feature ontology has been constructed based on the feature definition of modeling commands of CAD systems. A method for integration of semantic data has been proposed, implemented, and tested with two commercial CAD systems.

Product Variety Modeling Based on Formal Concept Analysis

  • Kim, Tai-Oun
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • Increasing product variety based on product family and product platform provides a company with a competitive advantage over its competitors. As products become more complex, short-life cycled and customized, the design efforts require more knowledge-intensive, collaborative and coordinating efforts for information sharing. By sharing knowledge, information, component and process across different families of products, the product realization process will be more efficient, cost-effective and quick-responsive. Formal Concept Analysis (FCA) is used for analyzing data and forming semantic structures that are formal abstractions of concepts of human thoughts. A Web Ontology Language (OWL) is designed for applications that need to process the content of information instead of simply presenting information to humans. OWL also captures the evolution of different components of the product family. The purpose of this paper is to develop product variety modeling to increase the usefulness of common platform. In constructing and analyzing product ontology, FCA is adopted for conceptual knowledge processing. For the selected product family, product variety Ontology is constructed and implemented using prot$\'{e}$g$\'{e}$-2000.

Similarity Measurement Using Ontology in Vessel Clearance Process (온톨로지를 이용한 선박 통관 프로세스의 유사성 측정)

  • Yahya, Bernardo N.;Park, Jae-Hun;Bae, Hye-Rim;Mo, Jung-Kwan
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.2
    • /
    • pp.153-162
    • /
    • 2011
  • The demands of complicated data communications have issued a new challenge to port logistics systems. Customers expect ports to handle their generated administrative data while a vessel is docked in a port. One port logistics system, known as the Vessel Clearance Process (VCP), manages large numbers of documents related to port of entry. In the VCP, information flows through many organizations such as the port authority, shipping agents, marine offices, immigration offices, and others. Therefore, for effective management of the Business Process (BP) of the VCP, a standardized method of BP modeling is essential, especially in heterogeneous system environments. In a port, according to port policy, terms and data are sued that are similar to but different from those of other logistics partners, which hinders standardized modeling of the BP. In order to avoid tedious and time-consuming document customization work, more convenient modeling of BP for VCP is essential. This paper proposes an ontology-based process similarity measurement to assist designer for process modeling in port domain, especially VCP. We expect that this methodology will use convenient and quick modeling of port business processes.

Design and implementation of a EER-based Visual Product Information Modeler (EER기반의 시각적 상품정보 모델링 에디터의 설계와 구현)

  • Tark, Moon-Hee;Kim, Kyung-Hwa;Shim, Jun-Ho
    • The Journal of Society for e-Business Studies
    • /
    • v.12 no.3
    • /
    • pp.97-106
    • /
    • 2007
  • A core technology that may realize the Semantic Web is Ontology. The OWL (Web Ontology Language) has been positioned as a standard language. It requires technical expertise to directly represent the domain knowledge in OWL. Based on our experience of analyzing the fundamental relationships of concepts in e-catalog domain, we have developed a visual product information modeler called PROMOD. The modeling editor makes it possible to automatically generate the OWL codes for the given product information. We employ an Extended Entity-Relationship for conceptual modeling, enriched with modeling elements specialized for the product domain. In this paper, we present our translation schemes from EER model to OWL codes, and how to design and implement the modeling editor. We also provide a scenario to demonstrate the usage of the editor in practice.

  • PDF

OWL Modeling using Ontology for Context Aware Recommendation Service (상황 인식 추천 서비스를 위한 온톨로지 이용 OWL 모델링)

  • Chang, Chang-Bok;Kim, Manj-Jae;Choi, Eui-In
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.265-273
    • /
    • 2012
  • It is essential to have Context-aware technology for personalization recommendation services and the appropriate representation and definition of Context information for context-aware. Ontology is possible to represent knowledge freely and knowledge can be extended by inferring. In addition, design of the ontology model is needed according to the purposes of utilization. This paper used context-aware technologies to implement a user personalization recommendation service. It also proposed the context through OWL modeling for user personalization recommendation service and used inference rules and inference engine for context reasoning.

Automated Modelling of Ontology Schema for Media Classification (미디어 분류를 위한 온톨로지 스키마 자동 생성)

  • Lee, Nam-Gee;Park, Hyun-Kyu;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.44 no.3
    • /
    • pp.287-294
    • /
    • 2017
  • With the personal-media development that has emerged through various means such as UCC and SNS, many media studies have been completed for the purposes of analysis and recognition, thereby improving the object-recognition level. The focus of these studies is a classification of media that is based on a recognition of the corresponding objects, rather than the use of the title, tag, and scripter information. The media-classification task, however, is intensive in terms of the consumption of time and energy because human experts need to model the underlying media ontology. This paper therefore proposes an automated approach for the modeling of the media-classification ontology schema; here, the OWL-DL Axiom that is based on the frequency of the recognized media-based objects is considered, and the automation of the ontology modeling is described. The authors conducted media-classification experiments across 15 YouTube-video categories, and the media-classification accuracy was measured through the application of the automated ontology-modeling approach. The promising experiment results show that 1500 actions were successfully classified from 15 media events with an 86 % accuracy.

Dispute of Part-Whole Representation in Conceptual Modeling (부분-전체 관계에 관한 개념적 모델링의 논의에 관하여)

  • Kim, Taekyung;Park, Jinsoo;Rho, Sangkyu
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.97-116
    • /
    • 2012
  • Conceptual modeling is an important step for successful system development. It helps system designers and business practitioners share the same view on domain knowledge. If the work is successful, a result of conceptual modeling can be beneficial in increasing productivity and reducing failures. However, the value of conceptual modeling is unlikely to be evaluated uniformly because we are lack of agreement on how to elicit concepts and how to represent those with conceptual modeling constructs. Especially, designing relationships between components, also known as part-whole relationships, have been regarded as complicated work. The recent study, "Representing Part-Whole Relations in Conceptual Modeling : An Empirical Evaluation" (Shanks et al., 2008), published in MIS Quarterly, can be regarded as one of positive efforts. Not only the study is one of few attempts of trying to clarify how to select modeling alternatives in part-whole design, but also it shows results based on an empirical experiment. Shanks et al. argue that there are two modeling alternatives to represent part-whole relationships : an implicit representation and an explicit one. By conducting an experiment, they insist that the explicit representation increases the value of a conceptual model. Moreover, Shanks et al. justify their findings by citing the BWW ontology. Recently, the study from Shanks et al. faces criticism. Allen and March (2012) argue that Shanks et al.'s experiment is lack of validity and reliability since the experimental setting suffers from error-prone and self-defensive design. They point out that the experiment is intentionally fabricated to support the idea, as such that using concrete UML concepts results in positive results in understanding models. Additionally, Allen and March add that the experiment failed to consider boundary conditions; thus reducing credibility. Shanks and Weber (2012) contradict flatly the argument suggested by Allen and March (2012). To defend, they posit the BWW ontology is righteously applied in supporting the research. Moreover, the experiment, they insist, can be fairly acceptable. Therefore, Shanks and Weber argue that Allen and March distort the true value of Shanks et al. by pointing out minor limitations. In this study, we try to investigate the dispute around Shanks et al. in order to answer to the following question : "What is the proper value of the study conducted by Shanks et al.?" More profoundly, we question whether or not using the BWW ontology can be the only viable option of exploring better conceptual modeling methods and procedures. To understand key issues around the dispute, first we reviewed previous studies relating to the BWW ontology. We critically reviewed both of Shanks and Weber and Allen and March. With those findings, we further discuss theories on part-whole (or part-of) relationships that are rarely treated in the dispute. As a result, we found three additional evidences that are not sufficiently covered by the dispute. The main focus of the dispute is on the errors of experimental methods: Shanks et al. did not use Bunge's Ontology properly; the refutation of a paradigm shift is lack of concrete, logical rationale; the conceptualization on part-whole relations should be reformed. Conclusively, Allen and March indicate properly issues that weaken the value of Shanks et al. In general, their criticism is reasonable; however, they do not provide sufficient answers how to anchor future studies on part-whole relationships. We argue that the use of the BWW ontology should be rigorously evaluated by its original philosophical rationales surrounding part-whole existence. Moreover, conceptual modeling on the part-whole phenomena should be investigated with more plentiful lens of alternative theories. The criticism on Shanks et al. should not be regarded as a contradiction on evaluating modeling methods of alternative part-whole representations. To the contrary, it should be viewed as a call for research on usable and useful approaches to increase value of conceptual modeling.

Development ontology model for partnership in supply chain networks (Supply Chain 파트너쉽에 관한 Ontology 모델 개발)

  • Lee, Hae-Kyeong;Kim, Tai-Oun
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.9-19
    • /
    • 2009
  • SCM은 시장의 변화를 신속하고 파악하고 IT 기술을 활용해 정보를 공유함으로써 변화에 보다 적극적으로 대처해 전체 Supply Chain의 이익을 높이고자 하는 전략적 사고라고 할 수 있다. SCM에서 파트너 선정은 장기적이고 전략적인 관점에서 이루어져야 하는 지식 집약적인 업무 Process이다. 본 연구는 SCM에서 파트너 선정의 절차를 Task Modeling을 통해 재사용 가능한 Knowledge-base를 개발하는 것이다. 이를 위해, 첫 번째로 전문가의 문제 해결 과정을 분석해 문제 해결 과정을 대상으로 한 Problem-Solving Ontology(Task Ontology)를 도출하고, 두 번째로 문제 해결 과정에 필요한 Domain Knowledge를 추출해 파트너 선정 문제 해결에 필요한 Domain Ontology를 개발한다. 끝으로 Problem-Solving Ontology와 Domain Ontology를 Protege를 통해 구현하고자 한다.

  • PDF