• Title/Summary/Keyword: Onset of Nucleate Boiling

Search Result 13, Processing Time 0.025 seconds

Effect of Convex Surface Curvature on the Onset of Nucleate Boiling of Subcooled Fluid Flow in Vertical Concentric Annuli (수직 동심 환형관 내부유동에서 과냉 유체의 비등 시작 열유속에 관한 표면 볼록 곡률의 영향)

  • Byun, Jung-Hwan;Lee, Sung-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1513-1520
    • /
    • 2002
  • Effect of Convex Surface Curvature on the Onset of Nucleate Boiling of Subcooled Fluid Flow in Vertical Concentric Annuli An experimental study has been carried out to investigate the effect of the transverse convex surface curvature of core tubes on heat transfer in concentric annular tubes. Water is used as the working fluid. Three annuli having a different radius of the inner cores, Ri=3.18mm, 6.35mm, and 12.70mm with a fixed ratio of Ri/Ro=0.5 are used over a range of the Reynolds number between about 40,000 and 80,000. The inner cores are made of smooth stainless steel tubes and heated electrically to provide constant heat fluxes throughout the whole length of each test section. Experimental result shows that heat flux values on the onset of nucleate boiling of the smaller inner diameter model is much higher than that of the larger size test model.

An experimental study on the effect of parameters for onset of nucleate boiling in concentric annuli flows (이중 동심관 유동에서 핵비등 시발점의 영향인자에 대한 실험적 연구)

  • Song, J.H.;Kim, K.C.;Lee, S.H.;Park, J.H.;Suk, H.C.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.373-378
    • /
    • 2000
  • An experimental investigation on the incipience of nucleate boiling in forced flow of water is performed as a verification and extension of previous analysis. The effects of the subcooling, Reynolds number and surface curvature on the onset of nucleate boiling(ONB) in a concentric annulus flow channel with smooth inner heating surface is investigated experimentaly. Through flow visualization, the boiling phenomenon was observed directly and the experimental results were examined to find ONB heat flux. The results show that the variation of heat flux at ONB is increased linearly as the Reynolds number and subcooling are increased. The effect of surface curvature is very great specially for a small radius when radius of the inner heating tube is increased, the heat flux at ONB is almost inversely increased for the range of this investigation. It is found that the effect of convex surface curvature on ONB heat flux is very significant for a small radius.

  • PDF

Saturation Boiling Heat Transfer on a Heated Surface With Impinging Water Jet (충돌수분류에 의한 포화비등열전달)

  • Ohm, Ki-Chan;Seo, Jeong-Yun
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.15 no.2
    • /
    • pp.182-187
    • /
    • 1986
  • Experimental measurements of the heat transfer and heat flux to a jet impinging on a heated surface were obtained in the nucleate boiling regimes. Tes-variables were jet at velocity and aspect ratio ($b/\ell$) of the heated surface. A slope of nucleate boiling curve increased with increasing the aspect ratio of the heated surface, namely approaching a rectangular square, and it is shown that surface tension has an important role for the onset of nucleate boiling heat transfer. A generalized correlation of the jet nucleate boiling heat transfer. A generalized correlation of the jet nucleate boiling heat transfer was found using a pi theorem.

  • PDF

TRANSIENT SIMULATION OF SUBCOOLED ONSET OF NUCLEATE BOILING IN A MICRO-CHANNEL (마이크로채널에서 과냉 핵비등 시발점의 비정상 수치해석)

  • Lee, H.J.
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.88-93
    • /
    • 2011
  • A numerical study of subcooled onset of nucleate boiling (ONB) in a micro-channel under pulsed heating using volume of fluids (VOF) model was conducted. The VOF simulation adopting the existing experimental condition is compared to the experimental data. The time to ONB was determined when the void fraction at the microheater surface first appeared. The theoretical superheat for homogeneous nucleation relatively predicts the transient ONB results of convective flow of water well based on local temperature distribution. It was found that once heat load increases at the heater, transient flow boiling starts to occur faster.

The Local Measurements of Single Phase and Boiling Heat Transfer by Confined Planar Impinging Jets (평면충돌제트에 의한 단상 및 비등 열전달의 국소적 측정)

  • Wu, Seong-Je;Shin, Chang-Hwan;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.895-901
    • /
    • 2004
  • Single-phase convection and nucleate boiling heat transfer were locally investigated for confined planar water jets. The detailed distributions of the wall temperature and the convection coefficient as well as the typical boiling curves were discussed. The curve for the single-phase convection indicated the developing laminar boundary layer, accompanied by monotonic increase of the wall temperature in the stream direction. Boiling was initiated from the furthest downstream as heat flux increased. Heat transfer variation according to the streamwise location was reduced as heat flux increased enough to create the vigorous nucleate boiling. Velocity effects were considered for the confined free-surface jet. Higher velocity of the jet caused the boiling incipient to be delayed more. The transition to turbulence precipitated by the bubble-induced disturbance was obvious only for the highest velocity, which enabled the boiling incipient to start in the middle of the heated surface, rather than the furthest downstream as was the case of the moderate and low velocities. The temperature at offset line were somewhat tower than those at the centerline for single-phase convection and partial boiling, and these differences were reduced as the nucleate boiling developed. For the region prior to transition, the convection coefficient distributions were similar in both cases while the temperatures were somewhat lower in the submerged jet. For single-phase convection, transition was initiated at $x/W{\cong}2.5$ and completed soon for the submerged jet, but the onset of transition was retarded to the distance at $x/W{\cong}6$ for the fee-surface jet.

Transition mechanism during the critical heat flux condition in flow and pool boiling (유동 및 풀비등에 있어서 한계열플럭스 상태하의 천이기구)

  • 김경근;김명환;권형정;김종헌;최순호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.40-53
    • /
    • 1989
  • Boiling heat transfer phenomena is widely applied to BWR and electrical heating system because of its high heat transfer coefficient. In these systems, steady state heat transfer is dependent on nucleate boiling. When the heat generating rate is sharply increased or the cooling capacity of coolant is sharply decreased, sharp wall temperature rise is occurred under the critical heat flux(CHF) condition. This paper presents the simple wall temperature fluctuation model of transition mechanism in the repeating process of overheating and quenching, when coalescent bubble passes relatively slowly on the wall and simultaneously the transition from nucleate boiling to film boiling is carried at especially onset of the CHF state. The values calculated by the present model are resulted comparatively good with the measured.

  • PDF

Experimental study of bubble behaviors and CHF on printed circuit board (PCB) in saturated pool water at various inclination angles

  • Tanjung, Elvira F.;Alunda, Bernard O.;Lee, Yong Joong;Jo, Daeseong
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1068-1078
    • /
    • 2018
  • Experiments were performed to investigate bubble behaviors and pool boiling Critical Heat Flux (CHF) on a thin flat rectangular copper heater fabricated on Printed Circuit Board (PCB), at various inclination angles. The surface inclination angles were $0^{\circ}$, $45^{\circ}$, $90^{\circ}$, $135^{\circ}$, and $180^{\circ}$. Results showed the Onset of Nucleate Boiling (ONB) heat flux increased with increasing heater orientation from $0^{\circ}$ to $90^{\circ}$, while early ONB occurred when the heater faced downwards ($135^{\circ}$ and $180^{\circ}$). The nucleate boiling was observed to be unstable at low heat flux (1-21% of CHF) and changed into typical boiling when the heat flux was above 21% of CHF. The result shows the CHF decreased with increasing heater orientation from $0^{\circ}$ to $180^{\circ}$. In addition, the bubble departure diameter at the heater facing upwards ($0^{\circ}$, $45^{\circ}$, and $90^{\circ}$) was more prominent compared to that of the heater facing downward ($135^{\circ}$). The nucleation site density also observed increased with increasing heat flux. Moreover, the departed bubbles with larger size were observed to require a longer time to re-heat and activate new nucleation sites. These results proved that the ONB, CHF, and bubble dynamics were strongly dependent on the heater surface orientation.

Study on the characteristics During Saturated Pool Nucleate Boiling of Refrigennt Binary Mixtures (냉매 이성분 혼합물의 포화 풀핵비등 특성에 관한 연구)

  • Kim Jeong Bae;Lee Han Choon;Kim Moo Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.5 s.236
    • /
    • pp.643-652
    • /
    • 2005
  • Saturated nucleate pool boiling experiments for binary mixtures, which are consisted of refrigerant R11 and R113, were performed with constant wall temperature condition. Results for binary mixtures were also compared with pure fluids. A microscale heater array and Wheatstone bridge circuits were used to maintain the constant temperature of the heating surface and to obtain heat flow rate measurements with high temporal and spatial resolutions. Bubble growth images were captured using a high speed CCD camera synchronized with the heat flow rate measurements. The departure time for binary mixtures was longer than that for pure fluids, and binary mixtures had a higher onset of nucleate boiling (ONB) temperature than pure fluids. In the asymptotic growth region, the bubble growth rate was proportional to a value between $t^{\frac{1}{6}}$ and $t^{\frac{1}{4}}$. The bubble growth behavior was analyzed to permit comparisons with binary mixtures and pure fluids at the same scale using dimensionless parameters. There was no discernable difference in the bubble growth behavior between binary mixtures and pure fluids for a given ONB temperature. And the departure radius and time were well predicted within a ${\pm}30{\%}$ error. The minimum heat transfer coefficient of binary mixtures occurred near the maximum ${\mid}y-x{\mid}$ value, and the average required heat flux during bubble growth did not depend on the mass fraction of R11 as more volatile component in binary mixtures. Finally, the results showed that for binary mixtures, a higher ONB temperature had the greatest effect on reducing the heat transfer coefficient.

A Visual Study on Nucleate Boiling Phenomena in a Closed Two-Phase Thermosyphon (밀폐형 2상 열사이폰내의 비등현상에 관한 가시화 연구)

  • 강환국;오광헌;김철주;박이동;황영규
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.185-198
    • /
    • 1995
  • This is an experimental study conducted to visualize the nucleate boiling phenomena and flow regimes occurring inside the liquid pool in a closed two-phase thermosyphon. To meet this purpose, an annular-type thermosyphon was designed and manufactured using a glass tube and a stainless steel tube, being assembled axisymmetrically. The heat to be supplied to the working fluid is generated within a very thin layer of stainless steel tube wall by applying a high frequency electromagnetic field through the induction coil, axisymmetrically set around the evaporator zone. Some important results were as follows ; 1) Considering the structural complexity of the tested thermosyphon, it showed good performance for the range of heat flux 2< q" <25kW/$m^2$ and saturation vapor pressure, 0.1<Pv<1.1bar 2) different type of nucleating boiling regimes were observed as described below, -Pulse boiling regime : Flow pattern changed cyclically with time during 1 cycle of pulse boiling process. The onset of Nucleation was followed by expulsive growing of vapor bubble, resulting in the so called blow-up phenomenon, massive expulsion of large amount of liquid around the bubble. -Transient : Some spherical vapor bobbles were observed growing out from 2~3 nucleating sites, that was dispersed at the lower part of the heated tube wall in the liquid pool. But the rest upper region above the nucleating sites were filled with churns or bubbles of vapor. -Continuous nucleate boiling regime : The whole zone of evaporator was filled with lots of spherical vapor bubbles, and the bubbles showed tendency to decrease in diameter as the heat flux increased.ased.

  • PDF

Power upgrading of WWR-S research reactor using plate-type fuel elements part I: Steady-state thermal-hydraulic analysis (forced convection cooling mode)

  • Alyan, Adel;El-Koliel, Moustafa S.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1417-1428
    • /
    • 2020
  • The design of a nuclear reactor core requires basic thermal-hydraulic information concerning the heat transfer regime at which onset of nucleate boiling (ONB) will occur, the pressure drop and flow rate through the reactor core, the temperature and power distributions in the reactor core, the departure from nucleate boiling (DNB), the condition for onset of flow instability (OFI), in addition to, the critical velocity beyond which the fuel elements will collapse. These values depend on coolant velocity, fuel element geometry, inlet temperature, flow direction and water column above the top of the reactor core. Enough safety margins to ONB, DNB and OFI must-emphasized. A heat transfer package is used for calculating convection heat transfer coefficient in single phase turbulent, transition and laminar regimes. The main objective of this paper is to study the possibility of power upgrading of WWR-S research reactor from 2 to 10 MWth. This study presents a one-dimensional mathematical model (axial direction) for steady-state thermal-hydraulic design and analysis of the upgraded WWR-S reactor in which two types of plate fuel elements are employed. FOR-CONV computer program is developed for the needs of the power upgrading of WWR-S reactor up to 10 MWth.