• Title/Summary/Keyword: Online social recommendation

Search Result 58, Processing Time 0.023 seconds

The Role of Online Social Recommendation and Similarity of Preferences: In Two Stage Purchase Decision Making Process (온라인 추천정보와 선호 유사성의 역할: 2단계 구매 의사 결정 모델을 중심으로)

  • Lee, Jae-Young;Ko, Hye-Min
    • Knowledge Management Research
    • /
    • v.16 no.3
    • /
    • pp.149-169
    • /
    • 2015
  • In this study, we try to understand the role of online social recommendation and the similarity of preferences between the recommender and the recommendee on consumer decisions in the framework of the two stage purchase decision-making process. Applying construal level theory to our context, we expect that the role of social recommendation and the similarity of preferences would vary over the stages in the two-stage decision making process. To test our hypotheses, we collected the data through an incentive compatible experiment, and analyzed the data with nested logit model. As a result, we found that the role of online social recommendation varies over the stages. Consumers take recommendation from similar others at the stage of consideration set formation, but no longer consider it at the stage of final choice. Consumers take recommendation from dissimilar others at the stage of consideration set formation. At the stage of final choice, however, consumers avoid choosing the option recommended by dissimilar others. The results of our study enrich the understanding about the role of social recommendation, and have implication to marketing practitioners who attempt to make online social recommendation system more efficient.

The Effects of Social Information on Recommendation Performance According to the Product Involvement Level (제품관여 수준에 따라 소셜 정보가 추천 성능에 미치는 영향)

  • Song, Hee Seok;Joo, Seok Jeong;Lee, Jae Hoon
    • Journal of Information Technology Applications and Management
    • /
    • v.21 no.4_spc
    • /
    • pp.361-379
    • /
    • 2014
  • With the rapid increase of social network usage, there are emerging trends of adopting social information among online users in building recommendation system. This study aims to investigate whether the additional usage of social information can improve recommendation performance in recommendation system and how much the improvement can be different according to the product involvement level. As an experiment result, social information does not affect positively to the recommendation accuracy but affect significantly to the recommendation quality. Also social information contributed more sensitively to the improvement of recommendation quality in high product involvement domain.

Collaborative filtering by graph convolution network in location-based recommendation system

  • Tin T. Tran;Vaclav Snasel;Thuan Q. Nguyen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.1868-1887
    • /
    • 2024
  • Recommendation systems research is a subfield of information retrieval, as these systems recommend appropriate items to users during their visits. Appropriate recommendation results will help users save time searching while increasing productivity at work, travel, or shopping. The problem becomes more difficult when the items are geographical locations on the ground, as they are associated with a wealth of contextual information, such as geographical location, opening time, and sequence of related locations. Furthermore, on social networking platforms that allow users to check in or express interest when visiting a specific location, their friends receive this signal by spreading the word on that online social network. Consideration should be given to relationship data extracted from online social networking platforms, as well as their impact on the geolocation recommendation process. In this study, we compare the similarity of geographic locations based on their distance on the ground and their correlation with users who have checked in at those locations. When calculating feature embeddings for users and locations, social relationships are also considered as attention signals. The similarity value between location and correlation between users will be exploited in the overall architecture of the recommendation model, which will employ graph convolution networks to generate recommendations with high precision and recall. The proposed model is implemented and executed on popular datasets, then compared to baseline models to assess its overall effectiveness.

Contents Recommendation Scheme Considering User Activity in Social Network Environments (소셜 네트워크 환경에서 사용자 행위를 고려한 콘텐츠 추천 기법)

  • Ko, Geonsik;Kim, Byounghoon;Kim, Daeyun;Choi, Minwoong;Lim, Jongtae;Bok, Kyoungsoo;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.2
    • /
    • pp.404-414
    • /
    • 2017
  • With the development of smartphones and online social networks, users produce a lot of contents and share them with each other. Therefore, users spend time by viewing or receiving the contents they do not want. In order to solve such problems, schemes for recommending useful contents have been actively studied. In this paper, we propose a contents recommendation scheme using collaborative filtering for users on online social networks. The proposed scheme consider a user trust in order to remove user data that lower the accuracy of recommendation. The user trust is derived by analyzing the user activity of online social network. For evaluating the user trust from various points of view, we collect user activities that have not been used in conventional techniques. It is shown through performance evaluation that the proposed scheme outperforms the existing scheme.

A Study on the Job Recommender System Using User Preference Information (사용자의 선호도 정보를 활용한 직무 추천 시스템 연구)

  • Li, Qinglong;Jeon, Sanghong;Lee, Changjae;Kim, Jae Kyeong
    • Journal of Information Technology Services
    • /
    • v.20 no.3
    • /
    • pp.57-73
    • /
    • 2021
  • Recently, online job websites have been activated as unemployment problems have emerged as social problems and demand for job openings has increased. However, while the online job platform market is growing, users have difficulty choosing their jobs. When users apply for a job on online job websites, they check various information such as job contents and recruitment conditions to understand the details of the job. When users choose a job, they focus on various details related to the job rather than simply viewing and supporting the job title. However, existing online job websites usually recommend jobs using only quantitative preference information such as ratings. However, if recommendation services are provided using only quantitative information, the recommendation performance is constantly deteriorating. Therefore, job recommendation services should provide personalized services using various information about the job. This study proposes a recommended methodology that improves recommendation performance by elaborating on qualitative preference information, such as details about the job. To this end, this study performs a topic modeling analysis on the job content of the user profile. Also, we apply LDA techniques to explore topics from job content and extract qualitative preferences. Experiments show that the proposed recommendation methodology has better recommendation performance compared to the traditional recommendation methodology.

The Effects of Online Uncivil Comments on Vicarious shame and Coping Strategies: Focusing on the Power of Social Identity and Social Recommendation

  • Kim, Jiwon
    • Journal of Internet Computing and Services
    • /
    • v.21 no.1
    • /
    • pp.119-125
    • /
    • 2020
  • Based on an online experiment, this research examined how uncivil expressions made by participants from the same political partisan group (in-group) influenced the emotional and behavioral intentions of other in-group members, especially when the incivility was supported by social recommendations such as "recommendations." As predicted, results showed that a higher level of vicarious shame was felt when participants perceived higher levels of incivility. However, no significant effects of social recommendations were found regarding levels of vicarious shame. That is, the level of shame was not significantly different between participants who were exposed to an in-group uncivil comment that received recommendations and participants who were exposed to in-group uncivil comment without recommendations. Findings further found two types of coping strategies -situation-reparation and situation-avoidance - among participants exposed to in-group uncivil comments. Yet no significant effects were found regarding coping strategies in response to the presence of social recommendations. Participants' feelings of shame were positively correlated with both types of coping strategies, supporting findings of previous studies. Implications of this study are further discussed.

A Study on the Effect of Characteristics of Online Streaming Course on Learning Satisfaction and Recommendation Intention (온라인 스트리밍 수업의 특성이 학습 만족도와 추천의도에 미치는 영향 분석 연구)

  • Zhu, LiuCun;Yang, HuiJun;Jiang, Xuejin;Hwang, HaSung
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.59-68
    • /
    • 2022
  • As real-time live streaming broadcasting and non-face-to-face classes are spreading in the Corona era, it is time to take academic interest in online streaming classes. In particular, it is important to clarify why users use online streaming classes. Therefore, this study proposes social presence, interest, convenience of use, and interactivity as characteristics of online streaming classes, and aims to verify how these characteristics affect learning satisfaction and furthermore, recommendation intention. As a result of conducting a survey on 338 Chinese collegestudents, it was found that interactivity, social presence, and interest had a positive effect on learning satisfaction, but the effect of ease did not appear. On the other hand, it was confirmed that learning satisfaction had a positive effect on the online streaming class recommendation intention.

Hybrid Recommendation System of Qualitative Information Based on Content Similarity and Social Affinity Analysis (컨텐츠 유사도와 사회적 친화도 분석 기법을 혼합한 가치정보의 추천 시스템)

  • Kim, Myeonghun;Kim, Sangwook
    • Journal of KIISE
    • /
    • v.43 no.11
    • /
    • pp.1188-1200
    • /
    • 2016
  • Recommendation systems play a significant role in providing personalized information to users, with enhanced satisfaction and reduced information overload. Since the mid-1990s, many studies have been conducted on recommendation systems, but few have examined the recommendations of information from people in the online social networking environment. In this paper, we present a hybrid recommendation method that combines both the traditional system of content-based techniques to improve specialization, and the recently developed system of social network-based techniques to best overcome a few limitations of the traditional techniques, such as the cold-start problem. By suggesting a state-of-the-art method, this research will help users in online social networks view more personalized information with less effort than before.

Design a Method Enhancing Recommendation Accuracy Using Trust Cluster from Large and Complex Information (대규모 복잡 정보에서 신뢰 클러스터를 이용한 추천 정확도 향상기법 설계)

  • Noh, Giseop;Oh, Hayoung;Lee, Jaehoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.17-25
    • /
    • 2018
  • Recently, with the development of ICT technology and the rapid spread of smart devices, a huge amount of information is being generated. The recommendation system has helped the informant to judge the information from the information overload, and it has become a solution for the information provider to increase the profit of the company and the publicity effect of the company. Recommendation systems can be implemented in various approaches, but social information is presented as a way to improve performance. However, no research has been done to utilize trust cluster information among users in the recommendation system. In this paper, we propose a method to improve the performance of the recommendation system by using the influence between the intra-cluster objects and the information between the trustor-trustee in the cluster generated in the online review. Experiments using the proposed method and real data have confirmed that the prediction accuracy is improved than the existing methods.

Offline Friend Recommendation using Mobile Context and Online Friend Network Information based on Tensor Factorization (모바일 상황정보와 온라인 친구네트워크정보 기반 텐서 분해를 통한 오프라인 친구 추천 기법)

  • Kim, Kyungmin;Kim, Taehun;Hyun, Soon. J
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.8
    • /
    • pp.375-380
    • /
    • 2016
  • The proliferation of online social networking services (OSNSs) and smartphones has enabled people to easily make friends with a large number of users in the online communities, and interact with each other. This leads to an increase in the usage rate of OSNSs. However, individuals who have immersed into their digital lives, prioritizing the virtual world against the real one, become more and more isolated in the physical world. Thus, their socialization processes that are undertaken only through lots of face-to-face interactions and trial-and-errors are apt to be neglected via 'Add Friend' kind of functions in OSNSs. In this paper, we present a friend recommendation system based on the on/off-line contextual information for the OSNS users to have more serendipitous offline interactions. In order to accomplish this, we modeled both offline information (i.e., place visit history) collected from a user's smartphone on a 3D tensor, and online social data (i.e., friend relationships) from Facebook on a matrix. We then recommended like-minded people and encouraged their offline interactions. We evaluated the users' satisfaction based on a real-world dataset collected from 43 users (12 on-campus users and 31 users randomly selected from Facebook friends of on-campus users).