• Title/Summary/Keyword: Online monitoring system

Search Result 192, Processing Time 0.067 seconds

Statistical Analysis of Count Rate Data for On-line Seawater Radioactivity Monitoring

  • Lee, Dong-Myung;Cong, Binh Do;Lee, Jun-Ho;Yeo, In-Young;Kim, Cheol-Su
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.2
    • /
    • pp.64-71
    • /
    • 2019
  • Background: It is very difficult to distinguish between a radioactive contamination source and background radiation from natural radionuclides in the marine environment by means of online monitoring system. The objective of this study was to investigate a statistical process for triggering abnormal level of count rate data measured from our on-line seawater radioactivity monitoring. Materials and Methods: Count rate data sets in time series were collected from 9 monitoring posts. All of the count rate data were measured every 15 minutes from the region of interest (ROI) for $^{137}Cs$ ($E_{\gamma}=661.6keV$) on the gamma-ray energy spectrum. The Shewhart ($3{\sigma}$), CUSUM, and Bayesian S-R control chart methods were evaluated and the comparative analysis of determination methods for count rate data was carried out in terms of the false positive incidence rate. All statistical algorithms were developed using R Programming by the authors. Results and Discussion: The $3{\sigma}$, CUSUM, and S-R analyses resulted in the average false positive incidence rate of $0.164{\pm}0.047%$, $0.064{\pm}0.0367%$, and $0.030{\pm}0.018%$, respectively. The S-R method has a lower value than that of the $3{\sigma}$ and CUSUM method, because the Bayesian S-R method use the information to evaluate a posterior distribution, even though the CUSUM control chart accumulate information from recent data points. As the result of comparison between net count rate and gross count rate measured in time series all the year at a monitoring post using the $3{\sigma}$ control charts, the two methods resulted in the false positive incidence rate of 0.142% and 0.219%, respectively. Conclusion: Bayesian S-R and CUSUM control charts are better suited for on-line seawater radioactivity monitoring with an count rate data in time series than $3{\sigma}$ control chart. However, it requires a continuous increasing trend to differentiate between a false positive and actual radioactive contamination. For the determination of count rate, the net count method is better than the gross count method because of relatively a small variation in the data points.

3D spatial data generation and data cross-utilization for monitoring Geoparks: Using Unmanned Aerial Vehicle and Virtual Reality (지질공원 모니터링을 위한 3D 공간데이터 구축과 데이터 교차활용 방안연구: 무인항공기와 가상현실을 이용하여)

  • Park, Haekyung;Lee, Dongkun
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.5
    • /
    • pp.501-511
    • /
    • 2018
  • Geoparks are worth preserving in an environmentally and heritage. Monitoring and public attention are essential for the conservation and protection of geoparks. The use of Unmanned Aerial Vehicles and the Structure from Motion algorithm enables effective monitoring of geoparks that are difficult to manage due to their wide range of manpower, and various spatial data derived from SfM can be utilized to improve awareness of geoparks that have been lacking. In order to prove this, firstly, we created the 3D spatial data by using the UAV and the SfM algorithm, which is one of the National geoparks of the Hantan-Imjin River area. Using this 3D data for Virtual Reality and 3D printing. After that, we verified the possibility of promoting the geopark through a simple online survey. Finally, we propose a method to utilize all the generated data from each step to promote and research for geoparks.

Online Strain Measurement at Multiple Points on a Rotating Blade with Fiber Bragg Grating Sensors and a Rotary Optical Coupler (광섬유 격자 센서와 회전 광학 커플러를 사용한 회전하는 블레이드 여러 지점에서의 온라인 변형률 측정)

  • Lee, Jong-Min;Hwang, Yo-Ha
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.1
    • /
    • pp.77-82
    • /
    • 2008
  • Strain-gauges have been dominantly used to measure strain at various points on a rotor, however, either a slip ring or telemetry has to be used to send sensor signals to data acquisition instruments at stationary side. Both slip ring and telemetry have numerous inherent problems which force severe limitations in real applications. This paper introduces a new rotor condition monitoring system using FBG(Fiber Bragg Grating) sensors and a rotary optical coupler. A single optical fiber with many FBG sensors is installed on the rotor and an optical dynamic interrogator is installed at stationary side. The sensor signal connection between rotating part and stationary part is made by the rotary optical coupling method which makes use of light's unique characteristic-light travels through space. Broad band light source from the interrogator travels to the optical fiber on the rotor and reflected FBG sensor signals travel back to the optical fiber on stationary side and are connected to the interrogator. Rotary optical coupler's insertion loss change due to rotation is compensated by using a reference sensor installed at the center of the rotor. The proposed system's performance has been successfully demonstrated by accurately measuring strains at 5 points on a blade rotating at high speed.

Dynamic Yield Improvement Model Using Neural Networks (신경망을 이용한 동적 수율 개선 모형)

  • Jung, Hyun-Chul;Kang, Chang-Wook;Kang, Hae-Woon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.2
    • /
    • pp.132-139
    • /
    • 2009
  • Yield is a very important measure that can expresses simply for productivity and performance of company. So, yield is used widely in many industries nowadays. With the development of the information technology and online based real-time process monitoring technology, many industries operate the production lines that are developed into automation system. In these production lines, the product structures are very complexity and variety. So, there are many multi-variate processes that need to be monitored with many quality characteristics and associated process variables at the same time. These situations have made it possible to obtain super-large manufacturing process data sets. However, there are many difficulties with finding the cause of process variation or useful information in the high capacity database. In order to solve this problem, neural networks technique is a favorite technique that predicts the yield of process for process control. This paper uses a neural networks technique for improvement and maintenance of yield in manufacturing process. The purpose of this paper is to model the prediction of a sub process that has much effect to improve yields in total manufacturing process and the prediction of adjustment values of this sub process. These informations feedback into the process and the process is adjusted. Also, we show that the proposed model is useful to the manufacturing process through the case study.

Application of an Optical Current Transformer For Measuring High Current

  • Kim, Yeong-Min;Park, Won-Zoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.11
    • /
    • pp.9-16
    • /
    • 2010
  • This paper examines the temperature characteristics of an Optical CT (optical current transformer) using the Faraday effect for measuring high current in a super high voltage-power apparatus. It is performed as follows by the sensor for embodying Faraday effect. $\cdot$ A single-mode optical fiber capable of maintaining a polarization state is used. $\cdot$ A light source is applied at 1310[nm] to a Laser Diode. $\cdot$ The Linear of Faraday effect to a large current is evaluated and $\cdot$ A possible application using an Optical CT was shown. An Influence of Faraday effect to the surrounding temperature measured -40~50[$^{\circ}C$], and the characteristic of the current sensitivity was reported. An application using the results of the temperature compensation system was used in order to compensate for surrounding temperatures. A possibility of applying Optical CT for electric power apparatus was advanced further. We were able to confirm that this temperature calibration method can minimize the fluctuation of the output signal depending on the temperature conditions.

Proposing a gamma radiation based intelligent system for simultaneous analyzing and detecting type and amount of petroleum by-products

  • Roshani, Mohammadmehdi;Phan, Giang;Faraj, Rezhna Hassan;Phan, Nhut-Huan;Roshani, Gholam Hossein;Nazemi, Behrooz;Corniani, Enrico;Nazemi, Ehsan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1277-1283
    • /
    • 2021
  • It is important for operators of poly-pipelines in petroleum industry to continuously monitor characteristics of transferred fluid such as its type and amount. To achieve this aim, in this study a dual energy gamma attenuation technique in combination with artificial neural network (ANN) is proposed to simultaneously determine type and amount of four different petroleum by-products. The detection system is composed of a dual energy gamma source, including americium-241 and barium-133 radioisotopes, and one 2.54 cm × 2.54 cm sodium iodide detector for recording the transmitted photons. Two signals recorded in transmission detector, namely the counts under photo peak of Americium-241 with energy of 59.5 keV and the counts under photo peak of Barium-133 with energy of 356 keV, were applied to the ANN as the two inputs and volume percentages of petroleum by-products were assigned as the outputs.

A Learning-based Power Control Scheme for Edge-based eHealth IoT Systems

  • Su, Haoru;Yuan, Xiaoming;Tang, Yujie;Tian, Rui;Sun, Enchang;Yan, Hairong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4385-4399
    • /
    • 2021
  • The Internet of Things (IoT) eHealth systems composed by Wireless Body Area Network (WBAN) has emerged recently. Sensor nodes are placed around or in the human body to collect physiological data. WBAN has many different applications, for instance health monitoring. Since the limitation of the size of the battery, besides speed, reliability, and accuracy; design of WBAN protocols should consider the energy efficiency and time delay. To solve these problems, this paper adopt the end-edge-cloud orchestrated network architecture and propose a transmission based on reinforcement algorithm. The priority of sensing data is classified according to certain application. System utility function is modeled according to the channel factors, the energy utility, and successful transmission conditions. The optimization problem is mapped to Q-learning model. Following this online power control protocol, the energy level of both the senor to coordinator, and coordinator to edge server can be modified according to the current channel condition. The network performance is evaluated by simulation. The results show that the proposed power control protocol has higher system energy efficiency, delivery ratio, and throughput.

Development of online drone control management information platform (온라인 드론방제 관리 정보 플랫폼 개발)

  • Lim, Jin-Taek;Lee, Sang-Beom
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.4
    • /
    • pp.193-198
    • /
    • 2021
  • Recently, interests in the 4th industry have increased the level of demand for pest control by farmers in the field of rice farming, and the interests and use of agricultural pest control drones. Therefore, the diversification of agricultural control drones that spray high-concentration pesticides and the increase of agricultural exterminators due to the acquisition of national drone certifications are rapidly developing the agricultural sector in the drone industry. In addition, as detailed projects, an effective platform is required to construct large-scale big data due to pesticide management, exterminator management, precise spraying, pest control work volume classification, settlement, soil management, prediction and monitoring of damages by pests, etc. and to process the data. However, studies in South Korea and other countries on development of models and programs to integrate and process the big data such as data analysis algorithms, image analysis algorithms, growth management algorithms, AI algorithms, etc. are insufficient. This paper proposed an online drone pest control management information platform to meet the needs of managers and farmers in the agricultural field and to realize precise AI pest control based on the agricultural drone pest control processor using drones and presented foundation for development of a comprehensive management system through empirical experiments.

A Study on the Role of Private-led Information Provision: Case of COVID-19 Pandemic (코로나19 팬데믹 상황에서 살펴본 민간 주도 정보제공의 역할 분석)

  • Cho, Hosoo;Jang, Moonkyoung;Ryu, Min Ho
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.4
    • /
    • pp.1-13
    • /
    • 2021
  • With the global pandemic of COVID-19, it is pointed out that exposure to false information to the public could cause serious problems. However, in pandemic situations, there is also an positive effect for the public to share private-led information rather than centralized unilateral delivery of information. This study analyzes the role of private-led information provision in infectious disease situations. To this end, topic modeling and sentiment analysis is carried out on online reviews of all COVID-19-related applications in Google Playstore provided by the Korean government and the private. The results showed that the user's evaluation of private apps, which were used from the early stage of COVID-19, was much higher than the apps provided by the government. In particular, users responded more positively to private apps than government apps in all aspects such as reliability of information, risk avoidance, timeliness, usefulness, and stability. Based on these results, a post-monitoring system is recommended rather than a pre-block of all private apps.

Open Markets and FDS(Fraud Detection System) (오픈마켓과 부당거래 방지 시스템)

  • Yoo, Soon-Duck;Kim, Jung-Ihl
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.5
    • /
    • pp.113-130
    • /
    • 2011
  • Due to the development of information and communication technology, the global influence on politics, economics, society, and culture has grown. A major example of this impact on the economic sector is the growth of e-commerce, which increases both the speed and efficiency of businesses. In light of these new developments, businesses need to shift away from the misconception that information overwhelms to embrace the enhanced competitiveness that e-commerce provides. However, concern about fraudulent transactions through e-commerce is pertinent because of the loss in both critical revenue and consumer confidence in open markets. Current solutions for fraudulent transactions include real-time monitoring and processing, payment pending, and confirmation through SMS, E-mail, and other wired means. Our research focuses on the management of Fraud Detection Systems (FDS) to safeguard online electronic payment systems. With effective implementation of our research we hope to foster an honorable online trading culture and protect consumers. Future comparative research in domestic and abroad markets would provide further insight into preventing fraudulent transactions.