• Title/Summary/Keyword: Online classification

Search Result 337, Processing Time 0.023 seconds

Affective Computing in Education: Platform Analysis and Academic Emotion Classification

  • So, Hyo-Jeong;Lee, Ji-Hyang;Park, Hyun-Jin
    • International journal of advanced smart convergence
    • /
    • v.8 no.2
    • /
    • pp.8-17
    • /
    • 2019
  • The main purpose of this study isto explore the potential of affective computing (AC) platforms in education through two phases ofresearch: Phase I - platform analysis and Phase II - classification of academic emotions. In Phase I, the results indicate that the existing affective analysis platforms can be largely classified into four types according to the emotion detecting methods: (a) facial expression-based platforms, (b) biometric-based platforms, (c) text/verbal tone-based platforms, and (c) mixed methods platforms. In Phase II, we conducted an in-depth analysis of the emotional experience that a learner encounters in online video-based learning in order to establish the basis for a new classification system of online learner's emotions. Overall, positive emotions were shown more frequently and longer than negative emotions. We categorized positive emotions into three groups based on the facial expression data: (a) confidence; (b) excitement, enjoyment, and pleasure; and (c) aspiration, enthusiasm, and expectation. The same method was used to categorize negative emotions into four groups: (a) fear and anxiety, (b) embarrassment and shame, (c) frustration and alienation, and (d) boredom. Drawn from the results, we proposed a new classification scheme that can be used to measure and analyze how learners in online learning environments experience various positive and negative emotions with the indicators of facial expressions.

Credit Risk Evaluations of Online Retail Enterprises Using Support Vector Machines Ensemble: An Empirical Study from China

  • LI, Xin;XIA, Han
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.8
    • /
    • pp.89-97
    • /
    • 2022
  • The e-commerce market faces significant credit risks due to the complexity of the industry and information asymmetries. Therefore, credit risk has started to stymie the growth of e-commerce. However, there is no reliable system for evaluating the creditworthiness of e-commerce companies. Therefore, this paper constructs a credit risk evaluation index system that comprehensively considers the online and offline behavior of online retail enterprises, including 15 indicators that reflect online credit risk and 15 indicators that reflect offline credit risk. This paper establishes an integration method based on a fuzzy integral support vector machine, which takes the factor analysis results of the credit risk evaluation index system of online retail enterprises as the input and the credit risk evaluation results of online retail enterprises as the output. The classification results of each sub-classifier and the importance of each sub-classifier decision to the final decision have been taken into account in this method. Select the sample data of 1500 online retail loan customers from a bank to test the model. The empirical results demonstrate that the proposed method outperforms a single SVM and traditional SVMs aggregation technique via majority voting in terms of classification accuracy, which provides a basis for banks to establish a reliable evaluation system.

A Comparative Analysis on Classification Systems for Children's Materials of Internet Portals and Online Bookstores (인터넷포털과 인터넷서점의 어린이자료 분류시스템의 비교분석)

  • Bae, Yeong-Hwal;Oh, Dong-Geun;Yeo, Ji-Suk
    • Journal of Korean Library and Information Science Society
    • /
    • v.39 no.3
    • /
    • pp.321-344
    • /
    • 2008
  • This study tries to compare the classification systems of major internet portals and their sub-portals specialized for the children and of major online book stores. It compares and analyzes the major directories of them and suggests recommendations not only to improve their own systems but also to apply to the development for the classification systems for children's library. Some of them are: (1) The system should reflect information requests and use behaviors of the children netizen. (2) It should select the terms reflecting the children's viewpoints and expressions and suggest the guidelines by ages. (3) It should maintain the clear hierarchies and grouping for the accessability and convenience of the users. (4) It will be helpful to establish the categories to mix the subject- or concept-based categories and the activities and objects of the children. (5) It will also be helpful to establish the categories based on the curricula added by those creating the imagination and interest and to subdivide by subject.

  • PDF

Object Tracking Based on Exactly Reweighted Online Total-Error-Rate Minimization (정확히 재가중되는 온라인 전체 에러율 최소화 기반의 객체 추적)

  • JANG, Se-In;PARK, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.53-65
    • /
    • 2019
  • Object tracking is one of important steps to achieve video-based surveillance systems. Object tracking is considered as an essential task similar to object detection and recognition. In order to perform object tracking, various machine learning methods (e.g., least-squares, perceptron and support vector machine) can be applied for different designs of tracking systems. In general, generative methods (e.g., principal component analysis) were utilized due to its simplicity and effectiveness. However, the generative methods were only focused on modeling the target object. Due to this limitation, discriminative methods (e.g., binary classification) were adopted to distinguish the target object and the background. Among the machine learning methods for binary classification, total error rate minimization can be used as one of successful machine learning methods for binary classification. The total error rate minimization can achieve a global minimum due to a quadratic approximation to a step function while other methods (e.g., support vector machine) seek local minima using nonlinear functions (e.g., hinge loss function). Due to this quadratic approximation, the total error rate minimization could obtain appropriate properties in solving optimization problems for binary classification. However, this total error rate minimization was based on a batch mode setting. The batch mode setting can be limited to several applications under offline learning. Due to limited computing resources, offline learning could not handle large scale data sets. Compared to offline learning, online learning can update its solution without storing all training samples in learning process. Due to increment of large scale data sets, online learning becomes one of essential properties for various applications. Since object tracking needs to handle data samples in real time, online learning based total error rate minimization methods are necessary to efficiently address object tracking problems. Due to the need of the online learning, an online learning based total error rate minimization method was developed. However, an approximately reweighted technique was developed. Although the approximation technique is utilized, this online version of the total error rate minimization could achieve good performances in biometric applications. However, this method is assumed that the total error rate minimization can be asymptotically achieved when only the number of training samples is infinite. Although there is the assumption to achieve the total error rate minimization, the approximation issue can continuously accumulate learning errors according to increment of training samples. Due to this reason, the approximated online learning solution can then lead a wrong solution. The wrong solution can make significant errors when it is applied to surveillance systems. In this paper, we propose an exactly reweighted technique to recursively update the solution of the total error rate minimization in online learning manner. Compared to the approximately reweighted online total error rate minimization, an exactly reweighted online total error rate minimization is achieved. The proposed exact online learning method based on the total error rate minimization is then applied to object tracking problems. In our object tracking system, particle filtering is adopted. In particle filtering, our observation model is consisted of both generative and discriminative methods to leverage the advantages between generative and discriminative properties. In our experiments, our proposed object tracking system achieves promising performances on 8 public video sequences over competing object tracking systems. The paired t-test is also reported to evaluate its quality of the results. Our proposed online learning method can be extended under the deep learning architecture which can cover the shallow and deep networks. Moreover, online learning methods, that need the exact reweighting process, can use our proposed reweighting technique. In addition to object tracking, the proposed online learning method can be easily applied to object detection and recognition. Therefore, our proposed methods can contribute to online learning community and object tracking, detection and recognition communities.

Analysis of the Online Review Based on the Theme Using the Hierarchical Attention Network (Hierarchical Attention Network를 활용한 주제에 따른 온라인 고객 리뷰 분석 모델)

  • Jang, In Ho;Park, Ki Yeon;Lee, Zoon Ky
    • Journal of Information Technology Services
    • /
    • v.17 no.2
    • /
    • pp.165-177
    • /
    • 2018
  • Recently, online commerces are becoming more common due to factors such as mobile technology development and smart device dissemination, and online review has a big influence on potential buyer's purchase decision. This study presents a set of analytical methodologies for understanding the meaning of customer reviews of products in online transaction. Using techniques currently developed in deep learning are implemented Hierarchical Attention Network for analyze meaning in online reviews. By using these techniques, we could solve time consuming pre-data analysis time problem and multiple topic problems. To this end, this study analyzes customer reviews of laptops sold in domestic online shopping malls. Our result successfully demonstrates over 90% classification accuracy. Therefore, this study classified the unstructured text data in the semantic analysis and confirmed the practical application possibility of the review analysis process.

Add-on selling strategies in an online open market

  • Shim, Beomsoo;Lee, Hanjun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.4
    • /
    • pp.985-995
    • /
    • 2015
  • Add-on selling can provide new chances to increase sellers' profits and meet customers' needs. Although prior studies have advocated add-on selling for its business value, there is an argument that add-on selling can cause customer repulsion. Therefore, we need to understand customer purchasing pattern related to add-on selling in order to promote it and to mitigate the customer repulsion. To that end, we applied data mining techniques to the 24,925 transactions of data from an online open market in Korea. We then conducted feature selection to investigate the most influential factors that can explain the characteristics of add-on selling transactions using a classification model. We also identified association rules among add-on selling and promotions. Finally, based on the findings in our experiments, we proposed add-on selling strategies for the target online market.

Classification of Online Tracking Technology and Implications in User Perspective (온라인 트래킹 기술 분류 및 이용자 관점에서의 시사점)

  • Lee, Bohan;Rha, Jong-Youn
    • Journal of Digital Convergence
    • /
    • v.16 no.9
    • /
    • pp.159-172
    • /
    • 2018
  • This study searched and analyzed online tracking technologies. It tried to understand what to consider when establishing policies related to online tracking. Online tracking technologies were classified into 'general cookies', 'super cookies', 'fingerprinting', 'device ID tracking' and 'cross-device tracking'. Political considerations should include the layers of online tracking, the subjects of tracking technology, purpose of use, duration and storage format of information, and development of technology. The implications of this study are as follows: first, policy makers and industry should be aware that the degree of risk perceived by users may vary according to the characteristics of online tracking technology. Secondly, it is necessary to understand factors that affect the classification of online tracking technology. Finally, in the industry, preemptive measures such as building an integrated privacy system are needed to relieve anxiety of users and to build trust.

Sparse Feature Convolutional Neural Network with Cluster Max Extraction for Fast Object Classification

  • Kim, Sung Hee;Pae, Dong Sung;Kang, Tae-Koo;Kim, Dong W.;Lim, Myo Taeg
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2468-2478
    • /
    • 2018
  • We propose the Sparse Feature Convolutional Neural Network (SFCNN) to reduce the volume of convolutional neural networks (CNNs). Despite the superior classification performance of CNNs, their enormous network volume requires high computational cost and long processing time, making real-time applications such as online-training difficult. We propose an advanced network that reduces the volume of conventional CNNs by producing a region-based sparse feature map. To produce the sparse feature map, two complementary region-based value extraction methods, cluster max extraction and local value extraction, are proposed. Cluster max is selected as the main function based on experimental results. To evaluate SFCNN, we conduct an experiment with two conventional CNNs. The network trains 59 times faster and tests 81 times faster than the VGG network, with a 1.2% loss of accuracy in multi-class classification using the Caltech101 dataset. In vehicle classification using the GTI Vehicle Image Database, the network trains 88 times faster and tests 94 times faster than the conventional CNNs, with a 0.1% loss of accuracy.

Online anomaly detection algorithm based on deep support vector data description using incremental centroid update (점진적 중심 갱신을 이용한 deep support vector data description 기반의 온라인 비정상 탐지 알고리즘)

  • Lee, Kibae;Ko, Guhn Hyeok;Lee, Chong Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.199-209
    • /
    • 2022
  • Typical anomaly detection algorithms are trained by using prior data. Thus the batch learning based algorithms cause inevitable performance degradation when characteristics of newly incoming normal data change over time. We propose an online anomaly detection algorithm which can consider the gradual characteristic changes of incoming normal data. The proposed algorithm based on one-class classification model includes both offline and online learning procedures. In offline learning procedure, the algorithm learns the prior data to be close to centroid of the latent space and then updates the centroid of the latent space incrementally by new incoming data. In the online learning, the algorithm continues learning by using the updated centroid. Through experiments using public underwater acoustic data, the proposed online anomaly detection algorithm takes only approximately 2 % additional learning time for the incremental centroid update and learning. Nevertheless, the proposed algorithm shows 19.10 % improvement in Area Under the receiver operating characteristic Curve (AUC) performance compared to the offline learning model when new incoming normal data comes.