• Title/Summary/Keyword: Online Social Networks

Search Result 175, Processing Time 0.02 seconds

Information-Sharing Patterns of A Directed Social Network: The Case of Imhonet

  • Lee, Danielle
    • Journal of Internet Computing and Services
    • /
    • v.18 no.4
    • /
    • pp.7-17
    • /
    • 2017
  • Despite various types of online social networks having different topological and functional characteristics, the kinds of online social networks considered in social recommendations are highly restricted. The pervasiveness of social networks has brought scholarly attention to expanding the scope of social recommendations into more diverse and less explored types of online social networks. As a preliminary attempt, this study examined the information-sharing patterns of a new type of online social network - unilateral (directed) network - and assessed the feasibility of the network as a useful information source. Specifically, this study mainly focused on the presence of shared interests in unilateral networks, because the shared information is the inevitable condition for utilizing the networks as a feasible source of personalized recommendations. As the results, we discovered that user pairs with direct and distant links shared significantly more similar information than the other non-connected pairs. Individual users' social properties were also significantly correlated with the degree of their information similarity with social connections. We also found the substitutability of online social networks for the top cohorts anonymously chosen by the collaborative filtering algorithm.

Online Social Networks - Opportunities for Empowering Cancer Patients

  • Mohammadzadeh, Zeinab;Davoodi, Somayeh;Ghazisaeidi, Marjan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.933-936
    • /
    • 2016
  • Online social network technologies have become important to health and apply in most health care areas. Particularly in cancer care, because it is a disease which involves many social aspects, online social networks can be very useful. Use of online social networks provides a suitable platform for cancer patients and families to present and share information about their medical conditions, address their educational needs, support decision making, and help to coping with their disease and improve their own outcomes. Like any other new technologies, online social networks, along with many benefits, have some negative effects such as violation of privacy and publication of incorrect information. However, if these effects are managed properly, they can empower patients to manage cancer through changing behavioral patterns and enhancing the quality of cancer patients lives This paper explains some application of online social networks in the cancer patient care process. It also covers advantages and disadvantages of related technologies.

The Role of Message Content and Source User Identity in Information Diffusion on Online Social Networks

  • Son, Insoo;Kim, Young-kyu;Lee, Dongwon
    • Asia pacific journal of information systems
    • /
    • v.25 no.2
    • /
    • pp.239-264
    • /
    • 2015
  • This study aims to investigate the effect of message content and source user identity on information diffusion in Twitter networks. For the empirical study, we collected 11,346 tweets pertaining to the three major mobile telecom carriers in Korea for three months, from September to December 2011. These tweets generated 59,111 retweets (RTs) and were retweeted at least once. Our analysis indicates that information diffusion in Twitter in terms of RT volume is affected primarily by the type of message content, such as the inclusion of corporate social responsibility activities. However, the effect of message content on information diffusion is heterogeneous to the identity of the information source. We argue that user identity affects recipients' perception of the credibility of focal information. Our study offers insights into the information diffusion mechanism in online social networks and provides managerial implications on the strategic utilization of online social networks for marketing communications with customers.

Personalizing Information Using Users' Online Social Networks: A Case Study of CiteULike

  • Lee, Danielle
    • Journal of Information Processing Systems
    • /
    • v.11 no.1
    • /
    • pp.1-21
    • /
    • 2015
  • This paper aims to assess the feasibility of a new and less-focused type of online sociability (the watching network) as a useful information source for personalized recommendations. In this paper, we recommend scientific articles of interests by using the shared interests between target users and their watching connections. Our recommendations are based on one typical social bookmarking system, CiteULike. The watching network-based recommendations, which use a much smaller size of user data, produces suggestions that are as good as the conventional Collaborative Filtering technique. The results demonstrate that the watching network is a useful information source and a feasible foundation for information personalization. Furthermore, the watching network is substitutable for anonymous peers of the Collaborative Filtering recommendations. This study shows the expandability of social network-based recommendations to the new type of online social networks.

Comparison of Online Game User Communities by using Social Network Analysis (소셜네트워크 분석을 통한 온라인게임 이용자커뮤니티 간 비교)

  • Ha, Sung-Ho;Im, Kwang-Hyuk;Pae, Hyun-U
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.8
    • /
    • pp.178-189
    • /
    • 2009
  • This paper investigates the influence of social networks on the satisfaction and loyalty of online game users. We gather the resulting questionnaires written by all respondents and compare social networks of users in the online game world. Social networks of online game users influence a sense of community. In consequence, the community sense influences the satisfaction and loyalty of online game users, respectively. Therefore, the companies which produce an online game and provide various services to users should consider the social networks and communities of their game users. Especially they have to try to manage the users who are the opinion leaders of the online game. If the companies make good relationships with users who are the opinion leaders of the online game, they would easily improve the loyalty of ordinary users by performing word-of-moth marketing of the users' opinions concerning about the online game.

Text Mining in Online Social Networks: A Systematic Review

  • Alhazmi, Huda N
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.396-404
    • /
    • 2022
  • Online social networks contain a large amount of data that can be converted into valuable and insightful information. Text mining approaches allow exploring large-scale data efficiently. Therefore, this study reviews the recent literature on text mining in online social networks in a way that produces valid and valuable knowledge for further research. The review identifies text mining techniques used in social networking, the data used, tools, and the challenges. Research questions were formulated, then search strategy and selection criteria were defined, followed by the analysis of each paper to extract the data relevant to the research questions. The result shows that the most social media platforms used as a source of the data are Twitter and Facebook. The most common text mining technique were sentiment analysis and topic modeling. Classification and clustering were the most common approaches applied by the studies. The challenges include the need for processing with huge volumes of data, the noise, and the dynamic of the data. The study explores the recent development in text mining approaches in social networking by providing state and general view of work done in this research area.

Unsupervised Scheme for Reverse Social Engineering Detection in Online Social Networks (온라인 소셜 네트워크에서 역 사회공학 탐지를 위한 비지도학습 기법)

  • Oh, Hayoung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.3
    • /
    • pp.129-134
    • /
    • 2015
  • Since automatic social engineering based spam attacks induce for users to click or receive the short message service (SMS), e-mail, site address and make a relationship with an unknown friend, it is very easy for them to active in online social networks. The previous spam detection schemes only apply manual filtering of the system managers or labeling classifications regardless of the features of social networks. In this paper, we propose the spam detection metric after reflecting on a couple of features of social networks followed by analysis of real social network data set, Twitter spam. In addition, we provide the online social networks based unsupervised scheme for automated social engineering spam with self organizing map (SOM). Through the performance evaluation, we show the detection accuracy up to 90% and the possibility of real time training for the spam detection without the manager.

Is Trust Transitive and Composable in Social Networks?

  • Song, Hee Seok
    • Journal of Information Technology Applications and Management
    • /
    • v.20 no.4
    • /
    • pp.191-205
    • /
    • 2013
  • Recently, the topic of predicting interpersonal trust in online social networks is receiving considerable attention, because trust plays a critical role in controlling the spread of distorted information and vicious rumors, as well as reducing uncertainties and risk from unreliable users in social networks. Several trust prediction models have been developed on the basis of transitivity and composability properties of trust; however, it is hard to find empirical studies on whether and how transitivity and composability properties of trust are operated in real online social networks. This study aims to predict interpersonal trust between two unknown users in social networks and verify the proposition on whether and how transitivity and composability of trust are operated in social networks. For this purpose, we chose three social network sites called FilmTrust, Advogato, and Epinion, which contain explicit trust information by their users, and we empirically investigated the proposition. Experimental results showed that trust can be propagated farther and farther along the trust link; however, when path distance becomes distant, the accuracy of trust prediction lowers because noise is activated in the process of trust propagation. Also, the composability property of trust is operated as we expected in real social networks. However, contrary to our expectations, when the path is synthesized more during the trust prediction, the reliability of predicted trust did not tend to increase gradually.

Privacy measurement method using a graph structure on online social networks

  • Li, XueFeng;Zhao, Chensu;Tian, Keke
    • ETRI Journal
    • /
    • v.43 no.5
    • /
    • pp.812-824
    • /
    • 2021
  • Recently, with an increase in Internet usage, users of online social networks (OSNs) have increased. Consequently, privacy leakage has become more serious. However, few studies have investigated the difference between privacy and actual behaviors. In particular, users' desire to change their privacy status is not supported by their privacy literacy. Presenting an accurate measurement of users' privacy status can cultivate the privacy literacy of users. However, the highly interactive nature of interpersonal communication on OSNs has promoted privacy to be viewed as a communal issue. As a large number of redundant users on social networks are unrelated to the user's privacy, existing algorithms are no longer applicable. To solve this problem, we propose a structural similarity measurement method suitable for the characteristics of social networks. The proposed method excludes redundant users and combines the attribute information to measure the privacy status of users. Using this approach, users can intuitively recognize their privacy status on OSNs. Experiments using real data show that our method can effectively and accurately help users improve their privacy disclosures.

Exploratory study on the Spam Detection of the Online Social Network based on Graph Properties (그래프 속성을 이용한 온라인 소셜 네트워크 스팸 탐지 동향 분석)

  • Jeong, Sihyun;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.5
    • /
    • pp.567-575
    • /
    • 2020
  • As online social networks are used as a critical medium for modern people's information sharing and relationship, their users are increasing rapidly every year. This not only increases usage but also surpasses the existing media in terms of information credibility. Therefore, emerging marketing strategies are deliberately attacking social networks. As a result, public opinion, which should be formed naturally, is artificially formed by online attacks, and many people trust it. Therefore, many studies have been conducted to detect agents attacking online social networks. In this paper, we analyze the trends of researches attempting to detect such online social network attackers, focusing on researches using social network graph characteristics. While the existing content-based techniques may represent classification errors due to privacy infringement and changes in attack strategies, the graph-based method proposes a more robust detection method using attacker patterns.