• 제목/요약/키워드: Online Social Networks

검색결과 175건 처리시간 0.026초

Information-Sharing Patterns of A Directed Social Network: The Case of Imhonet

  • Lee, Danielle
    • 인터넷정보학회논문지
    • /
    • 제18권4호
    • /
    • pp.7-17
    • /
    • 2017
  • Despite various types of online social networks having different topological and functional characteristics, the kinds of online social networks considered in social recommendations are highly restricted. The pervasiveness of social networks has brought scholarly attention to expanding the scope of social recommendations into more diverse and less explored types of online social networks. As a preliminary attempt, this study examined the information-sharing patterns of a new type of online social network - unilateral (directed) network - and assessed the feasibility of the network as a useful information source. Specifically, this study mainly focused on the presence of shared interests in unilateral networks, because the shared information is the inevitable condition for utilizing the networks as a feasible source of personalized recommendations. As the results, we discovered that user pairs with direct and distant links shared significantly more similar information than the other non-connected pairs. Individual users' social properties were also significantly correlated with the degree of their information similarity with social connections. We also found the substitutability of online social networks for the top cohorts anonymously chosen by the collaborative filtering algorithm.

Online Social Networks - Opportunities for Empowering Cancer Patients

  • Mohammadzadeh, Zeinab;Davoodi, Somayeh;Ghazisaeidi, Marjan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권3호
    • /
    • pp.933-936
    • /
    • 2016
  • Online social network technologies have become important to health and apply in most health care areas. Particularly in cancer care, because it is a disease which involves many social aspects, online social networks can be very useful. Use of online social networks provides a suitable platform for cancer patients and families to present and share information about their medical conditions, address their educational needs, support decision making, and help to coping with their disease and improve their own outcomes. Like any other new technologies, online social networks, along with many benefits, have some negative effects such as violation of privacy and publication of incorrect information. However, if these effects are managed properly, they can empower patients to manage cancer through changing behavioral patterns and enhancing the quality of cancer patients lives This paper explains some application of online social networks in the cancer patient care process. It also covers advantages and disadvantages of related technologies.

The Role of Message Content and Source User Identity in Information Diffusion on Online Social Networks

  • Son, Insoo;Kim, Young-kyu;Lee, Dongwon
    • Asia pacific journal of information systems
    • /
    • 제25권2호
    • /
    • pp.239-264
    • /
    • 2015
  • This study aims to investigate the effect of message content and source user identity on information diffusion in Twitter networks. For the empirical study, we collected 11,346 tweets pertaining to the three major mobile telecom carriers in Korea for three months, from September to December 2011. These tweets generated 59,111 retweets (RTs) and were retweeted at least once. Our analysis indicates that information diffusion in Twitter in terms of RT volume is affected primarily by the type of message content, such as the inclusion of corporate social responsibility activities. However, the effect of message content on information diffusion is heterogeneous to the identity of the information source. We argue that user identity affects recipients' perception of the credibility of focal information. Our study offers insights into the information diffusion mechanism in online social networks and provides managerial implications on the strategic utilization of online social networks for marketing communications with customers.

Personalizing Information Using Users' Online Social Networks: A Case Study of CiteULike

  • Lee, Danielle
    • Journal of Information Processing Systems
    • /
    • 제11권1호
    • /
    • pp.1-21
    • /
    • 2015
  • This paper aims to assess the feasibility of a new and less-focused type of online sociability (the watching network) as a useful information source for personalized recommendations. In this paper, we recommend scientific articles of interests by using the shared interests between target users and their watching connections. Our recommendations are based on one typical social bookmarking system, CiteULike. The watching network-based recommendations, which use a much smaller size of user data, produces suggestions that are as good as the conventional Collaborative Filtering technique. The results demonstrate that the watching network is a useful information source and a feasible foundation for information personalization. Furthermore, the watching network is substitutable for anonymous peers of the Collaborative Filtering recommendations. This study shows the expandability of social network-based recommendations to the new type of online social networks.

소셜네트워크 분석을 통한 온라인게임 이용자커뮤니티 간 비교 (Comparison of Online Game User Communities by using Social Network Analysis)

  • 하성호;임광혁;배현우
    • 한국콘텐츠학회논문지
    • /
    • 제9권8호
    • /
    • pp.178-189
    • /
    • 2009
  • 게임 산업은 멀티미디어 콘텐츠형 지식산업으로 세계적으로 지속적인 성장을 보이고 있다. 전체 게임 산업 중에서 큰 비중을 차지하고 있는 분야가 온라인 게임 분야이며 전체 게임 산업의 약 43%를 차지하고 있다. 온라인 게임은 대부분 월별 정액 요금제를 적용하는 만큼 제품이라기보다 서비스에 가까우므로 고객의 유지가 바로 기업의 현금흐름에 크게 기여하기 때문에 사용자의 만족도와 충성도가 매우 중요하다. 이렇듯 온라인 게임에서 사용자가 중요함에도 불구하고 온라인 게임 자체에 대해서는 기존에 많은 연구가 이루어진 반면, 사용자 중심의 연구, 그 중에서도 사용자의 커뮤니티에 대한 연구는 부족한 실정이다. 본 논문은 온라인 게임의 특징과 그 속성을 선행연구를 통하여 조사하고 온라인 게이머의 커뮤니티 의식과 소셜네트워크 형성에 영향을 미치는 요인을 파악하고자 한다. 또한, 온라인 게이머의 만족과 고객 충성도에 커뮤니티 의식과 소셜네트워크가 영향을 미치는 지를 검증하여 온라인 게임을 개발하고 서비스하는 기업에게 영업 전략을 제시하고자 한다.

Text Mining in Online Social Networks: A Systematic Review

  • Alhazmi, Huda N
    • International Journal of Computer Science & Network Security
    • /
    • 제22권3호
    • /
    • pp.396-404
    • /
    • 2022
  • Online social networks contain a large amount of data that can be converted into valuable and insightful information. Text mining approaches allow exploring large-scale data efficiently. Therefore, this study reviews the recent literature on text mining in online social networks in a way that produces valid and valuable knowledge for further research. The review identifies text mining techniques used in social networking, the data used, tools, and the challenges. Research questions were formulated, then search strategy and selection criteria were defined, followed by the analysis of each paper to extract the data relevant to the research questions. The result shows that the most social media platforms used as a source of the data are Twitter and Facebook. The most common text mining technique were sentiment analysis and topic modeling. Classification and clustering were the most common approaches applied by the studies. The challenges include the need for processing with huge volumes of data, the noise, and the dynamic of the data. The study explores the recent development in text mining approaches in social networking by providing state and general view of work done in this research area.

온라인 소셜 네트워크에서 역 사회공학 탐지를 위한 비지도학습 기법 (Unsupervised Scheme for Reverse Social Engineering Detection in Online Social Networks)

  • 오하영
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제4권3호
    • /
    • pp.129-134
    • /
    • 2015
  • 역 사회공학 기반 스팸공격은 공격자가 직접적인 공격을 수행하는 것이 아니라 피해자가 문제 있는 사이트 주소, 문자, 이메일 수신 및 친구 수락 등을 통해 유도하기 때문에 온라인 소셜 네트워크에서 활성화되기 쉽다. 스팸 탐지 관련 기존 연구들은 소셜 네트워크 특성을 반영하지 않은 채, 관리자의 수동적인 판단 및 라벨링을 바탕으로 스팸을 정상 데이터와 구분하는 단계에 머물러있다. 본 논문에서는 소셜 네트워크 데이터 중 하나인 Twitter spam데이터 셋을 실제로 분석하고 소셜 네트워크에서 다양한 속성들을 반영하여 정상 (ham)과 비정상 (spam)을 구분할 수 있는 탐지 메트릭을 제안한다. 또한, 관리자의 관여 없이도 실시간 및 점진적으로 스팸의 특성을 학습하여 새로운 스팸에 대해서도 탐지할 수 있는 비지도 학습 기법(unsupervised scheme)을 제안한다. 실험 결과, 제안하는 기법은 90% 이상의 정확도로 정상과 스팸을 구별했고 실시간 및 점진적 학습 결과도 정확함을 보였다.

Is Trust Transitive and Composable in Social Networks?

  • Song, Hee Seok
    • Journal of Information Technology Applications and Management
    • /
    • 제20권4호
    • /
    • pp.191-205
    • /
    • 2013
  • Recently, the topic of predicting interpersonal trust in online social networks is receiving considerable attention, because trust plays a critical role in controlling the spread of distorted information and vicious rumors, as well as reducing uncertainties and risk from unreliable users in social networks. Several trust prediction models have been developed on the basis of transitivity and composability properties of trust; however, it is hard to find empirical studies on whether and how transitivity and composability properties of trust are operated in real online social networks. This study aims to predict interpersonal trust between two unknown users in social networks and verify the proposition on whether and how transitivity and composability of trust are operated in social networks. For this purpose, we chose three social network sites called FilmTrust, Advogato, and Epinion, which contain explicit trust information by their users, and we empirically investigated the proposition. Experimental results showed that trust can be propagated farther and farther along the trust link; however, when path distance becomes distant, the accuracy of trust prediction lowers because noise is activated in the process of trust propagation. Also, the composability property of trust is operated as we expected in real social networks. However, contrary to our expectations, when the path is synthesized more during the trust prediction, the reliability of predicted trust did not tend to increase gradually.

Privacy measurement method using a graph structure on online social networks

  • Li, XueFeng;Zhao, Chensu;Tian, Keke
    • ETRI Journal
    • /
    • 제43권5호
    • /
    • pp.812-824
    • /
    • 2021
  • Recently, with an increase in Internet usage, users of online social networks (OSNs) have increased. Consequently, privacy leakage has become more serious. However, few studies have investigated the difference between privacy and actual behaviors. In particular, users' desire to change their privacy status is not supported by their privacy literacy. Presenting an accurate measurement of users' privacy status can cultivate the privacy literacy of users. However, the highly interactive nature of interpersonal communication on OSNs has promoted privacy to be viewed as a communal issue. As a large number of redundant users on social networks are unrelated to the user's privacy, existing algorithms are no longer applicable. To solve this problem, we propose a structural similarity measurement method suitable for the characteristics of social networks. The proposed method excludes redundant users and combines the attribute information to measure the privacy status of users. Using this approach, users can intuitively recognize their privacy status on OSNs. Experiments using real data show that our method can effectively and accurately help users improve their privacy disclosures.

그래프 속성을 이용한 온라인 소셜 네트워크 스팸 탐지 동향 분석 (Exploratory study on the Spam Detection of the Online Social Network based on Graph Properties)

  • 정시현;오하영
    • 한국정보통신학회논문지
    • /
    • 제24권5호
    • /
    • pp.567-575
    • /
    • 2020
  • 온라인 소셜 네트워크가 현대인의 정보 공유 및 교류의 핵심적인 매체로 사용됨에 따라, 그 이용자는 매해 급격하게 증가하고 있다. 이는 단순히 사용량 증가뿐만 아니라 정보의 신뢰성에서도 기존 언론 매체를 능가하기도 하는데, 최근 등장하는 마케팅 전략들은 이 점을 노리고 교묘하게 소셜 네트워크를 공격하고 있다. 그에 따라 자연스럽게 형성되어야 할 여론이 온라인 공격으로 인해 인위적으로 구성되기도 하고, 이를 신뢰하는 사람들도 많아지게 되었다. 따라서 온라인 소셜 네트워크를 공격하는 주체들을 탐지하고자 하는 연구들이 최근 많이 진행되고 있다. 본 논문에서는 이러한 온라인 소셜 네트워크 공격자들을 탐지하고자 하는 연구들의 동향을 분석하는데, 그 중 소셜 네트워크 그래프 특성을 이용한 연구들에 집중하고 있다. 기존의 contents-based 기법이 사생활 침해 및 공격 전략 변화에 따른 분류 오류를 나타낼 수 있음에 반해, 그래프 기반 방법은 공격자 패턴을 이용하여 보다 강건한 탐지 방법을 제안하고 있다.