• Title/Summary/Keyword: Online Shopping Recommendation.

Search Result 77, Processing Time 0.027 seconds

Open-source robot platform providing offline personalized advertisements (오프라인 맞춤형 광고 제공을 위한 오픈소스 로봇 플랫폼)

  • Kim, Young-Gi;Ryu, Geon-Hee;Hwang, Eui-Song;Lee, Byeong-Ho;Yoo, Jeong-Ki
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.4
    • /
    • pp.1-10
    • /
    • 2020
  • The performance of the personalized product recommendation system for offline shopping malls is poor compared with the one using online environment information since it is difficult to obtain visitors' characteristic information. In this paper, a mobile robot platform is suggested capable of recommending personalized advertisement using customers' sex and age information provided by Face API of MS Azure Cloud service. The performance of the developed robot is verified through locomotion experiments, and the performance of API used for our robot is tested using sampled images from open Asian FAce Dataset (AFAD). The developed robot could be effective in marketing by providing personalized advertisements at offline shopping malls.

A Hybrid Collaborative Filtering-based Product Recommender System using Search Keywords (검색 키워드를 활용한 하이브리드 협업필터링 기반 상품 추천 시스템)

  • Lee, Yunju;Won, Haram;Shim, Jaeseung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.151-166
    • /
    • 2020
  • A recommender system is a system that recommends products or services that best meet the preferences of each customer using statistical or machine learning techniques. Collaborative filtering (CF) is the most commonly used algorithm for implementing recommender systems. However, in most cases, it only uses purchase history or customer ratings, even though customers provide numerous other data that are available. E-commerce customers frequently use a search function to find the products in which they are interested among the vast array of products offered. Such search keyword data may be a very useful information source for modeling customer preferences. However, it is rarely used as a source of information for recommendation systems. In this paper, we propose a novel hybrid CF model based on the Doc2Vec algorithm using search keywords and purchase history data of online shopping mall customers. To validate the applicability of the proposed model, we empirically tested its performance using real-world online shopping mall data from Korea. As the number of recommended products increases, the recommendation performance of the proposed CF (or, hybrid CF based on the customer's search keywords) is improved. On the other hand, the performance of a conventional CF gradually decreased as the number of recommended products increased. As a result, we found that using search keyword data effectively represents customer preferences and might contribute to an improvement in conventional CF recommender systems.

The Research on Recommender for New Customers Using Collaborative Filtering and Social Network Analysis (협력필터링과 사회연결망을 이용한 신규고객 추천방법에 대한 연구)

  • Shin, Chang-Hoon;Lee, Ji-Won;Yang, Han-Na;Choi, Il Young
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.19-42
    • /
    • 2012
  • Consumer consumption patterns are shifting rapidly as buyers migrate from offline markets to e-commerce routes, such as shopping channels on TV and internet shopping malls. In the offline markets consumers go shopping, see the shopping items, and choose from them. Recently consumers tend towards buying at shopping sites free from time and place. However, as e-commerce markets continue to expand, customers are complaining that it is becoming a bigger hassle to shop online. In the online shopping, shoppers have very limited information on the products. The delivered products can be different from what they have wanted. This case results to purchase cancellation. Because these things happen frequently, they are likely to refer to the consumer reviews and companies should be concerned about consumer's voice. E-commerce is a very important marketing tool for suppliers. It can recommend products to customers and connect them directly with suppliers with just a click of a button. The recommender system is being studied in various ways. Some of the more prominent ones include recommendation based on best-seller and demographics, contents filtering, and collaborative filtering. However, these systems all share two weaknesses : they cannot recommend products to consumers on a personal level, and they cannot recommend products to new consumers with no buying history. To fix these problems, we can use the information which has been collected from the questionnaires about their demographics and preference ratings. But, consumers feel these questionnaires are a burden and are unlikely to provide correct information. This study investigates combining collaborative filtering with the centrality of social network analysis. This centrality measure provides the information to infer the preference of new consumers from the shopping history of existing and previous ones. While the past researches had focused on the existing consumers with similar shopping patterns, this study tried to improve the accuracy of recommendation with all shopping information, which included not only similar shopping patterns but also dissimilar ones. Data used in this study, Movie Lens' data, was made by Group Lens research Project Team at University of Minnesota to recommend movies with a collaborative filtering technique. This data was built from the questionnaires of 943 respondents which gave the information on the preference ratings on 1,684 movies. Total data of 100,000 was organized by time, with initial data of 50,000 being existing customers and the latter 50,000 being new customers. The proposed recommender system consists of three systems : [+] group recommender system, [-] group recommender system, and integrated recommender system. [+] group recommender system looks at customers with similar buying patterns as 'neighbors', whereas [-] group recommender system looks at customers with opposite buying patterns as 'contraries'. Integrated recommender system uses both of the aforementioned recommender systems to recommend movies that both recommender systems pick. The study of three systems allows us to find the most suitable recommender system that will optimize accuracy and customer satisfaction. Our analysis showed that integrated recommender system is the best solution among the three systems studied, followed by [-] group recommended system and [+] group recommender system. This result conforms to the intuition that the accuracy of recommendation can be improved using all the relevant information. We provided contour maps and graphs to easily compare the accuracy of each recommender system. Although we saw improvement on accuracy with the integrated recommender system, we must remember that this research is based on static data with no live customers. In other words, consumers did not see the movies actually recommended from the system. Also, this recommendation system may not work well with products other than movies. Thus, it is important to note that recommendation systems need particular calibration for specific product/customer types.

Influence of Digital Experience Factors on Purchase - Focusing on Moderating Effects of Digital Experience Frequency - (디지털 경험 요소가 구매에 미치는 영향 -경험빈도의 조절효과를 중심으로-)

  • Jung, Sang Hee;Chung, Byoung Gyu
    • Journal of Venture Innovation
    • /
    • v.3 no.2
    • /
    • pp.23-39
    • /
    • 2020
  • The 4th Industrial Revolution and Covid 19 are moving the fashion industry from offline to online. Fashion shows that took place offline are being replaced by online. Online is greatly increasing consumers' digital customer experience based on digital technologies. In this study, we studied the effect of digital experience factors on digital customer satisfaction based on the Schmitt(1999)'s experience marketing. The effect of digital customer satisfaction on purchase, continuous use intention, and recommendation intention were also studied. In addition, the moderating effect of experience frequency was studied. We randomly sampled 180 individuals among fashion mall users.. SPSS 24, AMOS 23 and Process Macro 3.5 were used for statistical analysis. In the study in which digital experience factors influence digital customer satisfaction, all except the digital act showed positive influence. The impact of influence was digital sense (β = .366) > digital think (β = .225)> digital feel (β = .191) > digital relate(β = .163). Digital customer satisfaction have been positive impact on purchasing, continuance use and recommendation intention. In the moderating effect of digital experience frequency, between digital feel, digital act and digital customer experience showed a statistically effective relationship. Based on the this study, We suggested theoretical and practical implications.

Analysis of shopping website visit types and shopping pattern (쇼핑 웹사이트 탐색 유형과 방문 패턴 분석)

  • Choi, Kyungbin;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.85-107
    • /
    • 2019
  • Online consumers browse products belonging to a particular product line or brand for purchase, or simply leave a wide range of navigation without making purchase. The research on the behavior and purchase of online consumers has been steadily progressed, and related services and applications based on behavior data of consumers have been developed in practice. In recent years, customization strategies and recommendation systems of consumers have been utilized due to the development of big data technology, and attempts are being made to optimize users' shopping experience. However, even in such an attempt, it is very unlikely that online consumers will actually be able to visit the website and switch to the purchase stage. This is because online consumers do not just visit the website to purchase products but use and browse the websites differently according to their shopping motives and purposes. Therefore, it is important to analyze various types of visits as well as visits to purchase, which is important for understanding the behaviors of online consumers. In this study, we explored the clustering analysis of session based on click stream data of e-commerce company in order to explain diversity and complexity of search behavior of online consumers and typified search behavior. For the analysis, we converted data points of more than 8 million pages units into visit units' sessions, resulting in a total of over 500,000 website visit sessions. For each visit session, 12 characteristics such as page view, duration, search diversity, and page type concentration were extracted for clustering analysis. Considering the size of the data set, we performed the analysis using the Mini-Batch K-means algorithm, which has advantages in terms of learning speed and efficiency while maintaining the clustering performance similar to that of the clustering algorithm K-means. The most optimized number of clusters was derived from four, and the differences in session unit characteristics and purchasing rates were identified for each cluster. The online consumer visits the website several times and learns about the product and decides the purchase. In order to analyze the purchasing process over several visits of the online consumer, we constructed the visiting sequence data of the consumer based on the navigation patterns in the web site derived clustering analysis. The visit sequence data includes a series of visiting sequences until one purchase is made, and the items constituting one sequence become cluster labels derived from the foregoing. We have separately established a sequence data for consumers who have made purchases and data on visits for consumers who have only explored products without making purchases during the same period of time. And then sequential pattern mining was applied to extract frequent patterns from each sequence data. The minimum support is set to 10%, and frequent patterns consist of a sequence of cluster labels. While there are common derived patterns in both sequence data, there are also frequent patterns derived only from one side of sequence data. We found that the consumers who made purchases through the comparative analysis of the extracted frequent patterns showed the visiting pattern to decide to purchase the product repeatedly while searching for the specific product. The implication of this study is that we analyze the search type of online consumers by using large - scale click stream data and analyze the patterns of them to explain the behavior of purchasing process with data-driven point. Most studies that typology of online consumers have focused on the characteristics of the type and what factors are key in distinguishing that type. In this study, we carried out an analysis to type the behavior of online consumers, and further analyzed what order the types could be organized into one another and become a series of search patterns. In addition, online retailers will be able to try to improve their purchasing conversion through marketing strategies and recommendations for various types of visit and will be able to evaluate the effect of the strategy through changes in consumers' visit patterns.

Effect on user evaluation, purchase intention, and satisfaction of personalized recommendation services by purchase journey in mobile fashion commerce (모바일 패션커머스의 구매여정별 개인화 추천서비스 사용자 평가와 구매의도 및 만족도에 미치는 영향)

  • kang, Sun-Young;Pan, Young-Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.1
    • /
    • pp.63-70
    • /
    • 2022
  • Fashion is a field in which personal taste acts as the first criterion for purchase, and it is being refined as an important strategy to increase purchase conversion on mobile. Although related studies have been conducted, there are insufficient studies to confirm this according to the detailed purchasing journey of consumers. The purpose of this study is to examine whether the evaluation of user experience factors of personalized recommendation service differs by purchase journey, and to reveal whether it affects purchase intention and satisfaction. Variety, reliability, and convenience showed a significant difference at the level of 0.001% and usefulness at the level of 0.05%. Satisfaction levels were different for each stage, such as novelty and usefulness in the cognitive and interest stage, and high reliability and diversity in the search stage. It has theoretical significance in that it enhances the understanding of the purchase journey by revealing that there is a difference in user evaluation of the personalized recommendation service, and it has practical significance in that it suggests the direction of improvement of the personalized recommendation service strategy. If research on effectiveness is conducted in the future, it will be able to contribute to an advanced strategy.

A Method of Fashion Recommender in Coordination with Individual Physical Features (개인의 신체적 특성에 맞춘 의류 추천 방법)

  • Kim, Jung-In
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.8
    • /
    • pp.1061-1069
    • /
    • 2011
  • With the development of information technology, online commercial transactions have been steadily increasing. However it is not easy to recommend the clothes in coordination with individual physical features. This paper presents a fashion coordination recommender system for women's clothes. The system includes the functionality of recommending clothes best-suited for customers in consideration of their individual physical features. It has also been designed to recommend clothes in vogue for those who are fashion-sensitive by considering the fashion trend of the times. Operated in an optional or coupling way, these functionalities of our system result in an intelligent fashion coordination system which recommends dress items to customers in various ways.

The Effects of Perceived Quality of Fashion Chatbot's Product Recommendation Service on Perceived Usefulness, Trust and Consumer Response (패션 챗봇 상품추천 서비스의 지각된 품질이 지각된 유용성, 신뢰 및 소비자 반응에 미치는 영향)

  • Lee, Yuri;Kim, Hyojung;Park, Minjung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.1
    • /
    • pp.80-98
    • /
    • 2022
  • Artificial intelligent chatbot services have recently become common in fashion e-retailing and are expected to improve online shopping by making it easy to recommend products. This study examines whether the perceived quality of a fashion chatbot affects consumers' trust and perception of usefulness, which in turn influences satisfaction and intention to use, in accordance with the information system success model. The study also investigates differences in perceived quality and consumer response variables between high and low groups of self-efficacy. A total of 341 consumers participated in an online survey. The results revealed that information quality and system quality had a significant impact on perceived usefulness and trust, and that service quality significantly impacted trust. Perceived usefulness and trust had a positive effect on consumer satisfaction, which in turn had a positive effect on intention to use. In addition, the findings revealed that people who had higher self-efficacy showed higher scores on perceived usefulness, trust, satisfaction, and intention to use chatbots as compared to people who had lower self-efficacy. This study suggested theoretical implications by applying the information system success model theory to fashion chatbot studies. It also suggested practical implications for e-commerce marketers developing retail strategies.

Perceived Product Value and Attitude Change Affecting Web-based Price Discount Level and Scarcity (웹 기반 가격할인 수준과 희소성이 영향을 주는 지각된 제품 가치와 태도 변화)

  • Zhang, Yutao;Lim, Hyun-A;Choi, Jaewon
    • The Journal of Information Systems
    • /
    • v.27 no.2
    • /
    • pp.157-173
    • /
    • 2018
  • Purpose Product characteristics and price value in website have strongly effects on customer satisfaction. Especially, in the online shopping site, the scarcity limits the customer's opportunity to purchase the product. Thus scarcity has been proposed as a important factor that makes the customer highly aware of the merchantability of the product. The scarcity in the web store is used as an important variable to make purchasing decisions of users easier by psychological pressure. In the case of scarce products with price discounts in online commerce, advertising formats that highlight scarcity value in the web commerce market are very effective in enhancing purchase intentions of consumers. Unlike offline stores, the importance of scarcity becomes more important when reflecting the characteristics of online commerce. Therefore, this study intends to confirm the influence of the degree of price discounts and scarcity information presented by Web sites on consumer purchase behavior in Web purchase behavior. Design/methodology/approach This study conducted a web-based experimental study on price sensitivity and price discount. Therefore, we created experimental web-sites that offer two stimuli according to the discount rate. The 200 respondents were randomly assigned. The stimuli were fictitious based on tourism products. The first stimulus presented the price discount(15% discount) with basic explanation about the package of the tourist package. The stimuli assigned to the second group were used for groups with high price discount intensity(65% discount). In this way, the two stimuli clearly distinguished the level of price discount intensity. This paper conducted t-test analysis and structural equation to analyze the experiemental results after confirming the reliability and validity. Findings The results of this study are as follows. The difference in price discount intensity (15% vs 65%) with scarcity showed the mean difference among all the variables. Therefore, this study concluded that there is a significant difference between the price discount of 15% and 65% for the acquisition value and transaction value of users. In particular, consumers' purchase intention is greater and product recommendation intensity is stronger when the price discount is 65%. As a result, the high degree of the price discount intensity with scarcity exerts a greater influence on consumers' purchase intentions. Product scarcity also have a significant impact on perceived value of users. Therefore, purchase intention of customers increases when perceived value increases their profit and pleasure feeling.

Recommender system using BERT sentiment analysis (BERT 기반 감성분석을 이용한 추천시스템)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.1-15
    • /
    • 2021
  • If it is difficult for us to make decisions, we ask for advice from friends or people around us. When we decide to buy products online, we read anonymous reviews and buy them. With the advent of the Data-driven era, IT technology's development is spilling out many data from individuals to objects. Companies or individuals have accumulated, processed, and analyzed such a large amount of data that they can now make decisions or execute directly using data that used to depend on experts. Nowadays, the recommender system plays a vital role in determining the user's preferences to purchase goods and uses a recommender system to induce clicks on web services (Facebook, Amazon, Netflix, Youtube). For example, Youtube's recommender system, which is used by 1 billion people worldwide every month, includes videos that users like, "like" and videos they watched. Recommended system research is deeply linked to practical business. Therefore, many researchers are interested in building better solutions. Recommender systems use the information obtained from their users to generate recommendations because the development of the provided recommender systems requires information on items that are likely to be preferred by the user. We began to trust patterns and rules derived from data rather than empirical intuition through the recommender systems. The capacity and development of data have led machine learning to develop deep learning. However, such recommender systems are not all solutions. Proceeding with the recommender systems, there should be no scarcity in all data and a sufficient amount. Also, it requires detailed information about the individual. The recommender systems work correctly when these conditions operate. The recommender systems become a complex problem for both consumers and sellers when the interaction log is insufficient. Because the seller's perspective needs to make recommendations at a personal level to the consumer and receive appropriate recommendations with reliable data from the consumer's perspective. In this paper, to improve the accuracy problem for "appropriate recommendation" to consumers, the recommender systems are proposed in combination with context-based deep learning. This research is to combine user-based data to create hybrid Recommender Systems. The hybrid approach developed is not a collaborative type of Recommender Systems, but a collaborative extension that integrates user data with deep learning. Customer review data were used for the data set. Consumers buy products in online shopping malls and then evaluate product reviews. Rating reviews are based on reviews from buyers who have already purchased, giving users confidence before purchasing the product. However, the recommendation system mainly uses scores or ratings rather than reviews to suggest items purchased by many users. In fact, consumer reviews include product opinions and user sentiment that will be spent on evaluation. By incorporating these parts into the study, this paper aims to improve the recommendation system. This study is an algorithm used when individuals have difficulty in selecting an item. Consumer reviews and record patterns made it possible to rely on recommendations appropriately. The algorithm implements a recommendation system through collaborative filtering. This study's predictive accuracy is measured by Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). Netflix is strategically using the referral system in its programs through competitions that reduce RMSE every year, making fair use of predictive accuracy. Research on hybrid recommender systems combining the NLP approach for personalization recommender systems, deep learning base, etc. has been increasing. Among NLP studies, sentiment analysis began to take shape in the mid-2000s as user review data increased. Sentiment analysis is a text classification task based on machine learning. The machine learning-based sentiment analysis has a disadvantage in that it is difficult to identify the review's information expression because it is challenging to consider the text's characteristics. In this study, we propose a deep learning recommender system that utilizes BERT's sentiment analysis by minimizing the disadvantages of machine learning. This study offers a deep learning recommender system that uses BERT's sentiment analysis by reducing the disadvantages of machine learning. The comparison model was performed through a recommender system based on Naive-CF(collaborative filtering), SVD(singular value decomposition)-CF, MF(matrix factorization)-CF, BPR-MF(Bayesian personalized ranking matrix factorization)-CF, LSTM, CNN-LSTM, GRU(Gated Recurrent Units). As a result of the experiment, the recommender system based on BERT was the best.