• Title/Summary/Keyword: Online Customer Reviews

Search Result 119, Processing Time 0.025 seconds

The Sizing Communications in Online Apparel Retail Websites - Focusing on Ready-to-Wear Women's Tailored Jacket - (온라인 의류 쇼핑 사이트의 제품 사이즈 정보 실태 분석 - 여성용 테일러드 재킷을 중심으로 -)

  • Lee, Ah Lam;Kim, Hee Eun
    • Fashion & Textile Research Journal
    • /
    • v.22 no.5
    • /
    • pp.617-627
    • /
    • 2020
  • This study investigates the apparel sizing communication presented in online retail websites focusing on women's ready-to-wear tailored jackets and to analyze the meaning of these information as the actual product size guide factor. A total of 34 retail websites were selected based on the highest growth fashion companies list and the best fashion brands list. We collected size information in two types: size specifications including sizing code, body measurements, garment measurements, and size references including customized size guide tools, size information in customer reviews, model size information, and others. Most websites prefer to present garment measurements rather than body measurements that are recommended notations under Korean standards and related regulations. In addition, there was the absence of consistency in presenting measurements list and terms that can confuse consumers in size communication. This study found that the stature measurement was a key factor in size reference despite that it did not represent a proper garment size. The obsolete Korean numbering sizing code such as '55 and '66 was still used in many ways such as idiomatic expressions for body shape. It also implied that we can take advantage of the old sizing code for accessible size information. The finding of this study gives an in-depth diagnosis of current online sizing information problems and suggests useful basic data for developing online apparel size standards and marketing strategies.

Expansion of Opinion Mining based on Entity Association Network Model (개체연관망 모델에 의한 오피니언마이닝의 확장)

  • Kim, Keun-Hyung
    • The KIPS Transactions:PartD
    • /
    • v.18D no.4
    • /
    • pp.237-244
    • /
    • 2011
  • Opinion Mining summarizes with classifying sensitive opinions of customers in huge online customer reviews for the attributes of products or services by positive and negative opinions. Because the customers represent their interests through subjective opinions as well as objective facts, the existing opinion mining techniques, which can analyze just the sensitive opinions, need to be expanded.. In this paper, We propose the novel entity association network model which expands the existing opinion mining techniques. The entity association model can not only represent positive and negative degree of the sensitive opinions, but also can represent the degree of the associations and relative importances between entities. We designed and implemented the customer reviews analysis system based on the entity association network model. We recognized that the system can represent more abundant information than the existing opinion mining techniques.

The Marketing Strategy of K-Beauty Product to Enhance Economic Growth in South Korea

  • SEON, Suk-Hyun
    • The Journal of Industrial Distribution & Business
    • /
    • v.13 no.8
    • /
    • pp.9-18
    • /
    • 2022
  • Purpose: K-beauty products industry trends, estimates and dynamics are examined in this study to discover a potential possibility for growth. There is a thorough examination of the elements that drive and impede the expansion of the K-beauty industry. This study aims to investigate marketing strategy of K beauty product to enhance economic growth in South Korea. Research design, data and methodology: This study used one of the most famous approach for analyzing the current literature which is a PRISMA (Process and Systematic Reviews and Meta-Analyses) method. This method maps out the number of records identified, the included and the excluded ones with the reasons for the exclusion. The technique clearly states the research problem and the appropriate scope. Results: The theoretical findings of prior literature indicates K-beauty companies should retain physical locations despite the trend toward online commerce, in order to guarantee that they meet the demands of different customers and enhance customer experiences to develop trust and loyalty. Conclusions: The findings of this research are of academic importance since they provide light on customer preferences for new K-beauty products. While past research has often ignored certain kinds of influencers, this study emphasized the need of considering influencers and certain product exposure strategies together, which has major academic consequences.

Improvement of recommendation system using attribute-based opinion mining of online customer reviews

  • Misun Lee;Hyunchul Ahn
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.259-266
    • /
    • 2023
  • In this paper, we propose an algorithm that can improve the accuracy performance of collaborative filtering using attribute-based opinion mining (ABOM). For the experiment, a total of 1,227 online consumer review data about smartphone apps from domestic smartphone users were used for analysis. After morpheme analysis using the KKMA (Kkokkoma) analyzer and emotional word analysis using KOSAC, attribute extraction is performed using LDA topic modeling, and the topic modeling results for each weighted review are used to add up the ratings of collaborative filtering and the sentiment score. MAE, MAPE, and RMSE, which are statistical model performance evaluations that calculate the average accuracy error, were used. Through experiments, we predicted the accuracy of online customers' app ratings (APP_Score) by combining traditional collaborative filtering among the recommendation algorithms and the attribute-based opinion mining (ABOM) technique, which combines LDA attribute extraction and sentiment analysis. As a result of the analysis, it was found that the prediction accuracy of ratings using attribute-based opinion mining CF was better than that of ratings implementing traditional collaborative filtering.

Omnichannel's Perception Effect on Omnichannel Use and Customer-Brand Relationship (옴니채널의 지각된 편리성과 유용성이 옴니채널 사용과 소비자-브랜드 관계에 미치는 영향)

  • Yim, Duk-Soon;Han, Sang-Seol
    • Journal of Distribution Science
    • /
    • v.14 no.7
    • /
    • pp.83-90
    • /
    • 2016
  • Purpose - This study focuses on new type distribution channel that named as Omnichannel. Omnichannel is developed from Multichannel which is used in many distribution channels to buy or selling goods. Omnichannel basically needs an Information and Communications Technologies(ICT) to use, so researcher conduct a Technology Acceptance Model(TAM) to research model. Customer-brand relationship was used as dependent variable to focus on the role of Omnichannel. Research design, data, and methodology - The subject of this study is customer who purchase goods or service through omnichannel. Based on the literature from the preceding research analysis of TAM and customer-brand relationship, this study was constructed by the reference to previous studies, final research model design for figure out casual relationship among perceived ease of use, perceived usefulness, omnichannel use and customer-brand relationship. From 2016 February 3 to March 17, questionnaire survey targeted customers who use online and offline channels. 273 questionnaire survey had conducted, then, 252 survey data were available for empirical analysis. Researcher provide descriptive statistics for checking generality. Cronbach's alpha value was used to check the reliability of data. Exploratory factor analysis was used for purification of values and eigenvalue checking. After EFA, Confirmatory factor analysis was used to prepare structural equation modeling with executing structural equation modeling for confirming hypothesis which developed by researcher. Results - The main results of this empirical study are as follows. First, omnichannel's perceived ease of use has positive significant effect on perceived usefulness(estimate: 0.579). Moreover, omnichannel's perceived ease of use and perceived usefulness has positive significant effect on omnichannel use(estimate: 0.325,0.648). Second, using omnichannel has positive significant effect on brand-customer relationship(estimate: 0.521). Every hypothesis adopted as researcher designed. This study found out the intermediate relationship between perceived ease of use and omnichannel use by investigating hypothesis. Conclusions - Base on the empirical result, this study confirmed that TAM theory perceived has relation with omnichannel. First, factors of TAM has positive effect on omnichannel use, so it highlights the important role of customer based interface and usefulness. Especially, perceived usefulness has high indirect influence on ease of use and use of omnichannel. It seems that when customers try to decide use or not use omnichannel, customers focus on percept benefits from omnichannel. Thus, a provider should applicate attractive price table, accurate product or service information and high switching cost strategy to emphasize the usefulness of omnichannel. Second, using omnichannel enhances the relationship between customers and brand, because there are more time and frequency to serve customers. It is important because good relationship between customers can increase the future's financial performance through word of mouse, positive brand image and loyalty to brand or company. Finally, despite of empirical result and implications, this study has limitations. First, there are only a few previous studies about omnicahnnel, so literature reviews are restricted. While set up the factors which can affect the use of omnichannel, next study should be considered with broader theories or models(ex: contingency theory). Second, omnichannel has developed from multichannel, so comparative analysis is needed between these methods because there is a possibility about different forte character of each distribution system on customer's consuming patterns.

Moderate Effects of Managerial Response on Hotel Ratings of Japanese Tourists (일본인 관광객의 숙박 후기 평점에 대한 관리자 응답의 조절효과)

  • JANG, Juhyeok
    • The Journal of Industrial Distribution & Business
    • /
    • v.10 no.7
    • /
    • pp.83-89
    • /
    • 2019
  • Purpose - It is a very important issue for the Korean tourism industry to increase tourism revenue by attracting foreign tourists. Although Japanese tourists have been an important part of the Korean tourism industry for a long time, the level of tourist satisfaction including accommodation has been at the worst compared to other foreign visitors, which strongly requires concrete solutions. Therefore, this study focuses on improving the satisfaction level of Japanese visitors in the use of accommodation, and find out the influence of the managerial response. Research design, data, and methodology - In this study, customer review and managerial response of hotels in Seoul were collected from "Rakuten Travel" which is the most representative online travel agency in Japan. As a result of collecting data from 2016 to 2018, 6,190 customer reviews and 1,241 managerial responses from 120 hotels were used for analysis. In addition, information on the properties of 120 hotels, such as the number of rooms, classification, types of hotel facilities, types of room facilities, accessibility and prices, were collected. To test the hypotheses, moderated multiple regression analysis was conducted with SPSS 22.0. Results - It was found that only 25 sites, 20.8% of the total 120 sites, were implementing managerial response and average response rate was 66.42% among them. As a result of examining the main effects of the hotel attributes on the ratings, accessibility and price are confirmed as effective variables. We also found that the response rate has a significant moderate effect in both the accessibility and price. In other words, there was a significant difference in the influence of accessibility and price on the ratings depending on the response rate. Also, it was confirmed that the response rate is not a pure moderator variable but a quasi moderator variable. Overall, the evidences partially supported the hypothesis. Conclusion - It was possible to provide important suggestions to the hotel managers who were concerned about managing tourist satisfaction with accessibility problems. It was found that the accessibility problem could be overcome by increasing the response rate. It was also confirmed that high ratings can be more effectively achieved for high priced hotels by increasing the response rate.

An Analytical Approach Using Topic Mining for Improving the Service Quality of Hotels (호텔 산업의 서비스 품질 향상을 위한 토픽 마이닝 기반 분석 방법)

  • Moon, Hyun Sil;Sung, David;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.21-41
    • /
    • 2019
  • Thanks to the rapid development of information technologies, the data available on Internet have grown rapidly. In this era of big data, many studies have attempted to offer insights and express the effects of data analysis. In the tourism and hospitality industry, many firms and studies in the era of big data have paid attention to online reviews on social media because of their large influence over customers. As tourism is an information-intensive industry, the effect of these information networks on social media platforms is more remarkable compared to any other types of media. However, there are some limitations to the improvements in service quality that can be made based on opinions on social media platforms. Users on social media platforms represent their opinions as text, images, and so on. Raw data sets from these reviews are unstructured. Moreover, these data sets are too big to extract new information and hidden knowledge by human competences. To use them for business intelligence and analytics applications, proper big data techniques like Natural Language Processing and data mining techniques are needed. This study suggests an analytical approach to directly yield insights from these reviews to improve the service quality of hotels. Our proposed approach consists of topic mining to extract topics contained in the reviews and the decision tree modeling to explain the relationship between topics and ratings. Topic mining refers to a method for finding a group of words from a collection of documents that represents a document. Among several topic mining methods, we adopted the Latent Dirichlet Allocation algorithm, which is considered as the most universal algorithm. However, LDA is not enough to find insights that can improve service quality because it cannot find the relationship between topics and ratings. To overcome this limitation, we also use the Classification and Regression Tree method, which is a kind of decision tree technique. Through the CART method, we can find what topics are related to positive or negative ratings of a hotel and visualize the results. Therefore, this study aims to investigate the representation of an analytical approach for the improvement of hotel service quality from unstructured review data sets. Through experiments for four hotels in Hong Kong, we can find the strengths and weaknesses of services for each hotel and suggest improvements to aid in customer satisfaction. Especially from positive reviews, we find what these hotels should maintain for service quality. For example, compared with the other hotels, a hotel has a good location and room condition which are extracted from positive reviews for it. In contrast, we also find what they should modify in their services from negative reviews. For example, a hotel should improve room condition related to soundproof. These results mean that our approach is useful in finding some insights for the service quality of hotels. That is, from the enormous size of review data, our approach can provide practical suggestions for hotel managers to improve their service quality. In the past, studies for improving service quality relied on surveys or interviews of customers. However, these methods are often costly and time consuming and the results may be biased by biased sampling or untrustworthy answers. The proposed approach directly obtains honest feedback from customers' online reviews and draws some insights through a type of big data analysis. So it will be a more useful tool to overcome the limitations of surveys or interviews. Moreover, our approach easily obtains the service quality information of other hotels or services in the tourism industry because it needs only open online reviews and ratings as input data. Furthermore, the performance of our approach will be better if other structured and unstructured data sources are added.

Exploring the Role of Preference Heterogeneity and Causal Attribution in Online Ratings Dynamics

  • Chu, Wujin;Roh, Minjung
    • Asia Marketing Journal
    • /
    • v.15 no.4
    • /
    • pp.61-101
    • /
    • 2014
  • This study investigates when and how disagreements in online customer ratings prompt more favorable product evaluations. Among the three metrics of volume, valence, and variance that feature in the research on online customer ratings, volume and valence have exhibited consistently positive patterns in their effects on product sales or evaluations (e.g., Dellarocas, Zhang, and Awad 2007; Liu 2006). Ratings variance, or the degree of disagreement among reviewers, however, has shown rather mixed results, with some studies reporting positive effects on product sales (e.g., Clement, Proppe, and Rott 2007) while others finding negative effects on product evaluations (e.g., Zhu and Zhang 2010). This study aims to resolve these contradictory findings by introducing preference heterogeneity as a possible moderator and causal attribution as a mediator to account for the moderating effect. The main proposition of this study is that when preference heterogeneity is perceived as high, a disagreement in ratings is attributed more to reviewers' different preferences than to unreliable product quality, which in turn prompts better quality evaluations of a product. Because disagreements mostly result from differences in reviewers' tastes or the low reliability of a product's quality (Mizerski 1982; Sen and Lerman 2007), a greater level of attribution to reviewer tastes can mitigate the negative effect of disagreement on product evaluations. Specifically, if consumers infer that reviewers' heterogeneous preferences result in subjectively different experiences and thereby highly diverse ratings, they would not disregard the overall quality of a product. However, if consumers infer that reviewers' preferences are quite homogeneous and thus the low reliability of the product quality contributes to such disagreements, they would discount the overall product quality. Therefore, consumers would respond more favorably to disagreements in ratings when preference heterogeneity is perceived as high rather than low. This study furthermore extends this prediction to the various levels of average ratings. The heuristicsystematic processing model so far indicates that the engagement in effortful systematic processing occurs only when sufficient motivation is present (Hann et al. 2007; Maheswaran and Chaiken 1991; Martin and Davies 1998). One of the key factors affecting this motivation is the aspiration level of the decision maker. Only under conditions that meet or exceed his aspiration level does he tend to engage in systematic processing (Patzelt and Shepherd 2008; Stephanous and Sage 1987). Therefore, systematic causal attribution processing regarding ratings variance is likely more activated when the average rating is high enough to meet the aspiration level than when it is too low to meet it. Considering that the interaction between ratings variance and preference heterogeneity occurs through the mediation of causal attribution, this greater activation of causal attribution in high versus low average ratings would lead to more pronounced interaction between ratings variance and preference heterogeneity in high versus low average ratings. Overall, this study proposes that the interaction between ratings variance and preference heterogeneity is more pronounced when the average rating is high as compared to when it is low. Two laboratory studies lend support to these predictions. Study 1 reveals that participants exposed to a high-preference heterogeneity book title (i.e., a novel) attributed disagreement in ratings more to reviewers' tastes, and thereby more favorably evaluated books with such ratings, compared to those exposed to a low-preference heterogeneity title (i.e., an English listening practice book). Study 2 then extended these findings to the various levels of average ratings and found that this greater preference for disagreement options under high preference heterogeneity is more pronounced when the average rating is high compared to when it is low. This study makes an important theoretical contribution to the online customer ratings literature by showing that preference heterogeneity serves as a key moderator of the effect of ratings variance on product evaluations and that causal attribution acts as a mediator of this moderation effect. A more comprehensive picture of the interplay among ratings variance, preference heterogeneity, and average ratings is also provided by revealing that the interaction between ratings variance and preference heterogeneity varies as a function of the average rating. In addition, this work provides some significant managerial implications for marketers in terms of how they manage word of mouth. Because a lack of consensus creates some uncertainty and anxiety over the given information, consumers experience a psychological burden regarding their choice of a product when ratings show disagreement. The results of this study offer a way to address this problem. By explicitly clarifying that there are many more differences in tastes among reviewers than expected, marketers can allow consumers to speculate that differing tastes of reviewers rather than an uncertain or poor product quality contribute to such conflicts in ratings. Thus, when fierce disagreements are observed in the WOM arena, marketers are advised to communicate to consumers that diverse, rather than uniform, tastes govern reviews and evaluations of products.

  • PDF

Understanding the Evaluation of Quality of Experience for Metaverse Services Utilizing Text Mining: A Case Study on Roblox (텍스트마이닝을 활용한 메타버스 서비스의 경험 품질 평가의 이해: 로블록스 사례 연구)

  • Minjun Kim
    • Journal of Service Research and Studies
    • /
    • v.13 no.4
    • /
    • pp.160-172
    • /
    • 2023
  • The metaverse, derived from the fusion of "meta" and "universe," encompasses a three-dimensional virtual realm where avatars actively participate in a range of political, economic, social, and cultural activities. With the recent development of the metaverse, the traditional way of experiencing services is changing. While existing studies have mainly focused on the technological advancements of metaverse services (e.g., scope of technological enablers, application areas of technologies), recent studies are focusing on evaluating the quality of experience (QoE) of metaverse services from a customer perspective. This is because understanding and analyzing service characteristics that determine QoE from a customer perspective is essential for designing successful metaverse services. However, relatively few studies have explored the customer-oriented approach for QoE evaluation thus far. This study conducted an online review analysis using text mining to overcome this limitation. In particular, this study analyzed 227,332 online reviews of the Roblox service, known as a representative metaverse service, and identified points for improving the Roblox service based on the analysis results. As a result of the study, nine service features that can be used for QoE evaluation of metaverse services were derived, and the importance of each feature was estimated through relationship analysis with service satisfaction. The importance estimation results identified the "co-experience" feature as the most important. These findings provide valuable insights and implications for service companies to identify their strengths and weaknesses, and provide useful insights to gain an advantage in the changing metaverse service environment.

Examination of Factors Influencing Switching Intention in Mobile Music Service: focusing on Moderating Effects of Attractiveness of Alternatives and Switching Costs (모바일 음악 서비스의 전환 의도에 영향을 미치는 요인에 대한 고찰: 대안의 매력도와 전환비용의 조절 효과를 중심으로)

  • Lee, Sung-Joon
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.10
    • /
    • pp.453-465
    • /
    • 2012
  • The major purpose of this study is to examine the effects of customers' perceptions toward service quality of mobile music service on customer loyalty and switching intention. For this purpose, this study posited three service quality characteristics including interface, service, price quality as key determinants of customer loyalty and switching intention based on relevant literature reviews. A research model and hypotheses concerning the relationship between these variables were constructed. Moreover, this study explored the moderating effects of attractiveness of alternative and switching costs on the relationship between customer loyalty and switching intention. An online survey was administrated on 433 mobile music service users and a simple, multiple, and hierarchical regression analysis were employed. The results indicated that all of interface, service, price quality have significant positive influences on customer loyalty, and both of service quality and attractiveness of alternatives have influences on the switching intention in a positive way. On the other way, it was shown that switching costs have a negative influence on the switching intention. The moderating effect of attractiveness of alternatives on the relationship between customer loyalty and switching intention was also found. The implications of these results are discussed.