• Title/Summary/Keyword: One-wheel mobile robot

Search Result 40, Processing Time 0.028 seconds

Fuzzy PD+I Control Method for Two-wheel Balancing Mobile Robot (퍼지 PD+I 제어 방식을 적용한 Two-wheel Balancing Mobile Robot)

  • Eom, Ki-Hwan;Lee, Kyu-Yun;Lee, Hyun-Kwan;Kim, Joo-Woong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • A two-wheel balancing vehicle, which helps people moving freely and fast, and is applied from inverted pendulum system, has been widely researched and developed, and some products are came into a market in actuality. Until now, the two-wheel balancing vehicles developed have chosen the general PID control method. In this paper, we propose a new control method to improve a control capacity for a two-wheeled balancing vehicle for human transportation. The proposed method is the fuzzy PD+I control that is one of the improved PID control, and it contains a 2input-1output fuzzy system. This fuzzy system processes signals from proportional and derivative controller, and the fuzzy output signal generates the final output by summing up integral signal. The non-linearity of the fuzzy system makes an optimal output control signal by changing weight of the proportional signal and the derivative signal in process of time. We have simulated the fuzzy PD+I control system and experimented by implementing the two-wheel balancing mobile robot to verify the advantages of the proposed fuzzy PD+I control method in comparison with general PID control. As the results of simulation and experimentation, the proposed fuzzy PD+I control method has better control performance than general PID in this system and improves it.

The study on a mobile robot for going up and down stairs in nuclear facilities (원전시설용 이동로보트의 계단승하강에 관한 연구)

  • 김병수;김창회;황석용;김승호;이종민
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.731-735
    • /
    • 1990
  • The mobile robot, named as KAEROT, is designed to go up and down stairs in nuclear facilities. To get a proper stable motion, kinematic modeling and analysis are seriously considered and new climbing algorithm is proposed focused on the stability. A couple of small wheels of one planetary wheel have to contact the surface ol stairs all the time to give the guarantee for stability and safety. To confirm the validity of the proposed algorithm, simulation is carried out. The results make evident of feasibility for the algorithm.

  • PDF

Design of Articulated Mobile Robot to Overcome Vertical Passages in Narrow Space (수직통로를 극복하기 위한 협소구역 이동용 다관절 로봇 설계)

  • Lee J.S.;Kim S.H.;Yang H.S.;Park N.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.806-811
    • /
    • 2005
  • The robot to search and rescue is used in narrow space where human cannot approach. In case of this robot, it can overcome obstacles such as wrecks or stairs etc. Also, this robot can do various locomotion for each object. In this reason, an articulated robot has advantages comparing with one module robot. However, the existing articulated robot has limits to overcome vertical passages. For expanding contacted territory of robot, a novel mechanism is demanded. In this paper, the novel mechanism of articulated mobile robot is designed for moving level ground and vertical passages. This paper proposes to change wheel alignment. The robot needs two important motions for passing vertical passages like pipe. One is a motion to press wheels at wall for not falling into gravity direction. The other is a motion that wheels contact a vertical direction of wall's tangential direction for reducing loss of force. The mechanism of the robot focused that two motions can be acted to use just one motor. Length of each link of robot is optimized that wheels contact a vertical direction of wall's tangential direction through kinematic modeling of each link. The force of pressing wall of robot is calculated through dynamic modeling. This robot composes four modules. This mechanism is confirmed by dynamic simulation using ADAMS program. The articulated mobile robot is elaborated based on the results of kinematic modeling and dynamic simulation.

  • PDF

Hybrid control of a tricycle wheeled AGV for path following using advanced fuzzy-PID

  • Bui, Thanh-Luan;Doan, Phuc-Thinh;Van, Duong-Tu;Kim, Hak-Kyeong;Kim, Sang-Bong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1287-1296
    • /
    • 2014
  • This paper is about control of Automated Guided Vehicle for path following using fuzzy logic controller. The Automated Guided Vehicle is a tricycle wheeled mobile robot with three wheels, two fixed passive wheels and one steering driving wheel. First, kinematic and dynamic modeling for Automated Guided Vehicle is presented. Second, a controller that integrates two control loops, kinematic control loop and dynamic control loop, is designed for Automated Guided Vehicle to follow an unknown path. The kinematic control loop based on Fuzzy logic framework and the dynamic control loop based on two PID controllers are proposed. Simulation and experimental results are presented to show the effectiveness of the proposed controllers.

Improvement of Energy Efficiency for an Omnidirectional Mobile Robot with Steerable Omnidirectional Wheels (조향 가능한 전방향 바퀴를 갖는 전방향 이동로봇의 에너지 효율 개선)

  • Song Jae-Bok;Kim Jeong-Keun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.8
    • /
    • pp.696-703
    • /
    • 2005
  • Since most autonomous mobile robots are powered by a battery, it is important to increase the continuous operating time without recharging. This can be achieved by improving the energy efficiency of a mobile robot, but little research on energy efficiency has been performed. This paper proposes two methods for improving the energy efficiency of an omnidirectional mobile robot.. One method is to realize a continuously variable transmission (CVT) by adopting the mechanism of steerable omnidirectional wheels. The other is the proposed steering algorithm in which wheel arrangement of the mobile robot is continuously adjusted so as to obtain the maximum energy efficiency of the motors during navigation. In addition, new omnidirectional wheels which can be transformed to the conventional wheels depending on the driving conditions are proposed to compensate for less efficient omnidirectional drive mode. Various tests show that motion control of the OMR-SOW works satisfactorily and the proposed steering algorithm for CVT can provide higher energy efficiency than the algorithm using a fixed steering angle. In addition, it is shown that the differential drive mode can give better energy efficiency than the omnidirectional drive mode.

Prediction of Maneuverability and Efficiency for a Mobile Robot on Rough Terrain through the development of a Testbed for Analysis of Robot-terrain interaction (지형-로봇간의 상호작용 분석 장치의 개발을 통한 야지 주행 로봇의 기동성 및 효율성 예측)

  • Kim, Jayoung;Lee, Jihong
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.2
    • /
    • pp.116-128
    • /
    • 2013
  • This paper focuses on development of a testbed for analysis of robot-terrain interaction on rough terrain and also, through one wheel driving experiments using this testbed, prediction of maximum velocity and acceleration of UGV. Firstly, from the review regarding previous researches for terrain modeling, the main variables for measurement are determined. A testbed is developed to measure main variables related to robot-terrain interaction. Experiments are performed on three kinds of rough terrains (grass, gravel, and sand) and traction-slip curves are obtained using the data of the drawbar pull and slip ratio. Traction-slip curves are used to predict driving performance of UGV on rough terrain. Maximum velocity and acceleration of UGVs are predicted by the simple kinematics and dynamics model of two kinds of 4-wheel mobile robots. And also, driving efficiency of UGVs is predicted to reduce energy consumption while traversing rough terrains.

Guideline for the Design of Wall-Climbing Mobile Robot Using Permanent Magnetic Wheels (영구 자석 바퀴를 이용한 벽면 이동 로봇의 설계시의 설계지침)

  • 이화조;김은찬;한승철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.548-553
    • /
    • 2002
  • Most tasks of the large vertical or ceiling structures have been carried out by human power. Those tasks require us much operation costs and times, safety devices, etc. So the need of automation for those tasks have been rising. That automation needs a wall-climbing mobile vehicle. Most former researches are things about attachment devices and moving mechanisms. A wall-climbing mobile vehicle must be designed by a method different from the case of the vehicle of the horizontal environment. That is because gravity acts as a negative role on the stability of a wall-climbing vehicle. In this thesis, the particular shape characteristics of a wall-climbing mobile vehicle are derived by the wall-environment modeling. In addition, some design constraints of the permanent magnetic wheel as an attachment device was studied. According to those requirements and constraints, one specific wall-climbing mobile vehicle was designed and some experiments were made on the attachment ability of that vehicle.

  • PDF

2-Input 2-Output ANFIS Controller for Trajectory Tracking of Mobile Robot (이동로봇의 경로추적을 위한 2-입력 2-출력 ANFIS제어기)

  • Lee, Hong-Kyu
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.4
    • /
    • pp.586-592
    • /
    • 2012
  • One approach of the control of a nonlinear system that has gained some success employs a fuzzy structure in cooperation with a neural network(ANFIS). The traditional ANFIS can only model and control the process in single-dimensional output nature in spite of multi-dimensional input. The membership function parameters are tuned using a combination of least squares estimation and back-propagation algorithm. In the case of a mobile robot, we need to drive left and right wheel respectively. In this paper, we proposed the control system architecture for a mobile robotic system that employs the 2-input 2-output ANFIS controller for trajectory tracking. Simulation results and preliminary evaluation show that the proposed architecture is a feasible one for mobile robotic systems.

Accurate Calibration of Odometry Errors for Wheeled Mobile Robots by using Experimental Orientation Errors (차륜형 이동로봇의 방향각오차를 이용한 오도메트리 정밀보정기법)

  • Jung, Changbae;Jung, Daun;Chung, Woojin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.4
    • /
    • pp.319-326
    • /
    • 2014
  • Accurate estimation of the robot's position has an important role in autonomous navigation. Odometry is one of the most widely used techniques for mobile robot positioning. However, odometry has a well-known drawback that the position errors are accumulated when the travel distance increases. The UMBmark method is the conventional odometry calibration scheme for two wheel differential mobile robots. In the UMBmark method, the approximations for small angles are used in order to simplify the calculations. In this paper, we propose the new calibration scheme by using experimental orientation errors. Kinematic parameters can be calculated accurately without approximations by using experimental orientation errors. The numerical simulation and experimental results show that the odometry accuracy can be improved by the proposed method.

Kinematic Correction and a Design for Velocity Trajectory to Reduce an Odometer Error of Wheeled-Mobile Robots (구륜 이동 로봇의 주행오차 감소를 위한 기구학적 보정과 속도궤적의 설계)

  • Kim, Jong-Su;Mun, Jong-U;Park, Jong-Guk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.3
    • /
    • pp.9-18
    • /
    • 2000
  • This paper presents methods for reducing odometer errors caused by kinematic imperfections in wheeled mobile robots. Wheel diameters and wheelbase are corrected by using encoders without landmarks. And a new velocity trajectory is proposed that compensates for an orientation error due to acceleration-resolution constraints on motor controllers. Based on this velocity trajectory, the wheel velocity of one out of two driven wheels may be changed by the traveled distance of the mobile robot. It is shown that a wheeled mobile robot can't move along a straight line exactly, even if kinematic correction are achieved perfectly, and this phenomenon is attributable to acceleration-resolution constraints on motor controllers. We experiment on a wheeled mobile robot with 2 d.o.f. and discuss the results.

  • PDF