• Title/Summary/Keyword: One-to-One Resonance

Search Result 1,420, Processing Time 0.029 seconds

The agonistic action of URO-K10 on Kv7.4 and 7.5 channels is attenuated by co-expression of KCNE4 ancillary subunit

  • Lee, Jung Eun;Park, Christine Haewon;Kang, Hana;Ko, Juyeon;Cho, Suhan;Woo, JooHan;Chae, Mee Ree;Lee, Sung Won;Kim, Sung Joon;Kim, Jinsung;So, Insuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.6
    • /
    • pp.503-516
    • /
    • 2020
  • KCNQ family constitutes slowly-activating potassium channels among voltage-gated potassium channel superfamily. Recent studies suggested that KCNQ4 and 5 channels are abundantly expressed in smooth muscle cells, especially in lower urinary tract including corpus cavernosum and that both channels can exert membrane stabilizing effect in the tissues. In this article, we examined the electrophysiological characteristics of overexpressed KCNQ4, 5 channels in HEK293 cells with recently developed KCNQ-specific agonist. With submicromolar EC50, the drug not only increased the open probability of KCNQ4 channel but also increased slope conductance of the channel. The overall effect of the drug in whole-cell configuration was to increase maximal whole-cell conductance, to prolongate the activation process, and left-shift of the activation curve. The agonistic action of the drug, however, was highly attenuated by the co-expression of one of the β ancillary subunits of KCNQ family, KCNE4. Strong in vitro interactions between KCNQ4, 5 and KCNE4 were found through Foster Resonance Energy Transfer and co-immunoprecipitation. Although the expression levels of both KCNQ4 and KCNE4 are high in mesenteric arterial smooth muscle cells, we found that 1 μM of the agonist was sufficient to almost completely relax phenylephrine-induced contraction of the muscle strip. Significant expression of KCNQ4 and KCNE4 in corpus cavernosum together with high tonic contractility of the tissue grants highly promising relaxational effect of the KCNQ-specific agonist in the tissue.

The Predictable Factors of the Postoperative Kyphotic Change of Sagittal Alignment of the Cervical Spine after the Laminoplasty

  • Lee, Jun Seok;Son, Dong Wuk;Lee, Su Hun;Kim, Dong Ha;Lee, Sang Weon;Song, Geun Sung
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.5
    • /
    • pp.577-583
    • /
    • 2017
  • Objective : Laminoplasty is an effective surgical method for treating cervical degenerative disease. However, postoperative complications such as kyphosis, restriction of neck motion, and instability are often reported. Despite sufficient preoperative lordosis, this procedure often aggravates the lordotic curve of the cervical spine and straightens cervical alignment. Hence, it is important to examine preoperative risk factors associated with postoperative kyphotic alignment changes. Our study aimed to investigate preoperative radiologic parameters associated with kyphotic deformity post laminoplasty. Methods : We retrospectively reviewed the medical records of 49 patients who underwent open door laminoplasty for cervical spondylotic myelopathy (CSM) or ossification of the posterior longitudinal ligament (OPLL) at Pusan National University Yangsan Hospital between January 2011 and December 2015. Inclusion criteria were as follows : 1) preoperative diagnosis of OPLL or CSM, 2) no previous history of cervical spinal surgery, cervical trauma, tumor, or infection, 3) minimum of one-year follow-up post laminoplasty with proper radiologic examinations performed in outpatient clinics, and 4) cases showing C7 and T1 vertebral body in the preoperative cervical sagittal plane. The radiologic parameters examined included C2-C7 Cobb angles, T1 slope, C2-C7 sagittal vertical axis (SVA), range of motion (ROM) from C2-C7, segmental instability, and T2 signal change observed on magnetic resonance imaging (MRI). Clinical factors examined included preoperative modified Japanese Orthopedic Association scores, disease classification, duration of symptoms, and the range of operation levels. Results : Mean preoperative sagittal alignment was $13.01^{\circ}$ lordotic; $6.94^{\circ}$ lordotic postoperatively. Percentage of postoperative kyphosis was 80%. Patients were subdivided into two groups according to postoperative Cobb angle change; a control group (n=22) and kyphotic group (n=27). The kyphotic group consisted of patients with more than $5^{\circ}$ kyphotic angle change postoperatively. There were no differences in age, sex, C2-C7 Cobb angle, T1 slope, C2-C7 SVA, ROM from C2-C7, segmental instability, or T2 signal change. Multiple regression analysis revealed T1 slope had a strong relationship with postoperative cervical kyphosis. Likewise, correlation analysis revealed there was a statistical significance between T1 slope and postoperative Cobb angle change (p=0.035), and that there was a statistically significant relationship between T1 slope and C2-C7 SVA (p=0.001). Patients with higher preoperative T1 slope demonstrated loss of lordotic curvature postoperatively. Conclusion : Laminoplasty has a high probability of aggravating sagittal balance of the cervical spine. T1 slope is a good predictor of postoperative kyphotic changes of the cervical spine. Similarly, T1 slope is strongly correlated with C2-C7 SVA.

Layered Double Hydroxide Nanoparticles for Bio-Imaging Applications (LDH 나노입자 기반의 바이오 이미징 소재)

  • Jin, Wenji;Ha, Seongjin;Lee, Dongki;Park, Dae-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.445-454
    • /
    • 2019
  • Layered double hydroxides (LDHs) nanoparticles have emerged as novel nanomaterials for bio-imaging applications due to its unique layered structure, physicochemical properties, and good biocompatibility. Bio-imaging is one of the most important fields for medical applications in clinical diagnostics and therapeutics of various diseases. Enhanced diagnostic techniques are needed to realize new paradigm for next-generation personalized medicine through nanoscale materials. When nanotechnology is introduced into bio-imaging system, nanoparticle probes can endow imaging techniques with enhanced ability to obtain information about biological system at the molecular level. In this review, we summarize structural features of LDH nanoparticles with current issues of bio-imaging system. LDH nanoparticle probes are also discussed through in vitro as well as in vivo studies in various bio-imaging techniques including fluorescence imaging, magnetic resonance imaging (MRI), positron emission tomography (PET), and computed X-ray tomography (CT), which will have the potential in the development of the advanced nanoparticles with high sensitivity and selectivity.

3-Dimensional Numerical Analysis of Air Flow inside OWC Type WEC Equipped with Channel of Seawater Exchange and Wave Characteristics around Its Structure (in Case of Regular Waves) (해수소통구를 구비한 진동수주형 파력발전구조물 내에서 공기흐름과 구조물 주변에서 파랑특성에 관한 3차원수치해석(규칙파의 경우))

  • Lee, Kwang Ho;Lee, Jun Hyeong;Jeong, Ik Han;Kim, Do Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.242-252
    • /
    • 2018
  • It is well known that an Oscillating Water Column Wave Energy Converter (OWC-WEC) is one of the most efficient wave absorber equipment. This device transforms the vertical motion of water column in the air chamber into the air flow velocity and produces electricity from the driving force of turbine as represented by the Wells turbine. Therefore, in order to obtain high electric energy, it is necessary to amplify the water surface vibration by inducing resonance of the piston mode in the water surface fluctuation in the air chamber. In this study, a new type of OWC-WEC with a seawater channel is used, and the wave deformation by the structure, water surface fluctuation in the air chamber, air outflow velocity from the nozzle and seawater flow velocity in the seawater channel are evaluated by numerical analysis in detail. The numerical analysis model uses open CFD code OLAFLOW model based on multi-phase analysis technique of Navier-Stokes solver. To validate model, numerical results and existing experimental results are compared and discussed. It is revealed within the scope of this study that the air flow velocity at nozzle increases as the Ursell number becomes larger, and the air velocity that flows out from the inside of the air chamber is larger than the velocity of incoming air into the air chamber.

Targetoid Primary Liver Malignancy in Chronic Liver Disease: Prediction of Postoperative Survival Using Preoperative MRI Findings and Clinical Factors

  • So Hyun Park;Subin Heo;Bohyun Kim;Jungbok Lee;Ho Joong Choi;Pil Soo Sung;Joon-Il Choi
    • Korean Journal of Radiology
    • /
    • v.24 no.3
    • /
    • pp.190-203
    • /
    • 2023
  • Objective: We aimed to assess and validate the radiologic and clinical factors that were associated with recurrence and survival after curative surgery for heterogeneous targetoid primary liver malignancies in patients with chronic liver disease and to develop scoring systems for risk stratification. Materials and Methods: This multicenter retrospective study included 197 consecutive patients with chronic liver disease who had a single targetoid primary liver malignancy (142 hepatocellular carcinomas, 37 cholangiocarcinomas, 17 combined hepatocellular carcinoma-cholangiocarcinomas, and one neuroendocrine carcinoma) identified on preoperative gadoxetic acid-enhanced MRI and subsequently surgically removed between 2010 and 2017. Of these, 120 patients constituted the development cohort, and 77 patients from separate institution served as an external validation cohort. Factors associated with recurrence-free survival (RFS) and overall survival (OS) were identified using a Cox proportional hazards analysis, and risk scores were developed. The discriminatory power of the risk scores in the external validation cohort was evaluated using the Harrell C-index. The Kaplan-Meier curves were used to estimate RFS and OS for the different risk-score groups. Results: In RFS model 1, which eliminated features exclusively accessible on the hepatobiliary phase (HBP), tumor size of 2-5 cm or > 5 cm, and thin-rim arterial phase hyperenhancement (APHE) were included. In RFS model 2, tumors with a size of > 5 cm, tumor in vein (TIV), and HBP hypointense nodules without APHE were included. The OS model included a tumor size of > 5 cm, thin-rim APHE, TIV, and tumor vascular involvement other than TIV. The risk scores of the models showed good discriminatory performance in the external validation set (C-index, 0.62-0.76). The scoring system categorized the patients into three risk groups: favorable, intermediate, and poor, each with a distinct survival outcome (all log-rank p < 0.05). Conclusion: Risk scores based on rim arterial enhancement pattern, tumor size, HBP findings, and radiologic vascular invasion status may help predict postoperative RFS and OS in patients with targetoid primary liver malignancies.

A Coupled-ART Neural Network Capable of Modularized Categorization of Patterns (복합 특징의 분리 처리를 위한 모듈화된 Coupled-ART 신경회로망)

  • 우용태;이남일;안광선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.10
    • /
    • pp.2028-2042
    • /
    • 1994
  • Properly defining signal and noise in a self-organizing system like ART(Adaptive Resonance Theory) neural network model raises a number of subtle issues. Pattern context must enter the definition so that input features, treated as irrelevant noise when they are embedded in a given input pattern, may be treated as informative signals when they are embedded in a different input pattern. The ATR automatically self-scales their computational units to embody context and learning dependent definitions of a signal and noise and there is no problem in categorizing input pattern that have features similar in nature. However, when we have imput patterns that have features that are different in size and nature, the use of only one vigilance parameter is not enough to differentiate a signal from noise for a good categorization. For example, if the value fo vigilance parameter is large, then noise may be processed as an informative signal and unnecessary categories are generated: and if the value of vigilance parameter is small, an informative signal may be ignored and treated as noise. Hence it is no easy to achieve a good pattern categorization. To overcome such problems, a Coupled-ART neural network capable of modularized categorization of patterns is proposed. The Coupled-ART has two layer of tightly coupled modules. the upper and the lower. The lower layer processes the global features of a pattern and the structural features, separately in parallel. The upper layer combines the categorized outputs from the lower layer and categorizes the combined output, Hence, due to the modularized categorization of patterns, the Coupled-ART classifies patterns more efficiently than the ART1 model.

  • PDF

Static and Dynamic Analysis for Railway Tunnel according to Filling Materials for overbroken tunnel bottom (철도터널 하부 여굴처리 방법에 대한 정적 및 동적 안정성 검토)

  • Seo, Jae-Won;Cho, Kook-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.5
    • /
    • pp.668-682
    • /
    • 2017
  • Alignments of railways recently constructed in Korea have been straightened due to the advent of high-speed rail, which means increasing the numbers of tunnels and bridges. Overbreak during tunnel construction may be unavoidable, and is very influential on overall stability. Over-excavation in tunneling is also one of the most important factors in construction costs. Overbreak problems around crown areas have decreased with improvements of excavation methods, but overbreak problems around bottom areas have not decreased because those areas are not very influential on tunnel stability compared with crown areas. The filling costs of 10 cm thickness of overbreak at the bottom of a tunnel are covered under construction costs by Korea Railway Authority regulations, but filling costs for more than the covered thickness are considered losses of construction cost. The filling material for overbreak bottoms of tunnels should be concrete, but concrete and mixed granular materials with fractured rock are also used for some sites. Tunnels in which granular materials with fractured rock are used may have a discontinuous section under the concrete slab track. The discontinuous section influences the propagation of waves generated from train operation. When the bottom of a tunnel is filled with only concrete material, the bottom of the tunnel can be considered as a continuous section, in which the waves generated from a train may propagate without reflection waves. However, a discontinuous section filled with mixed granular materials may reflect waves, which can cause resonance of vibration. The filled materials and vibration propagation characteristics are studied in this research. Tunnel bottom filling materials that have ratios of granular material to concrete of 5.0 %, 11.5 %, and 18.0 % are investigated. Samples were made and tested to determine their material properties. Static numerical analyses were performed using the FEM program under train operation load; test results were found to satisfy the stability requirements. However, dynamic analysis results show that some mixed ratios may generate resonance vibration from train operation at certain speeds.

Angiotensin-converting Enzyme Gene Polymorphism and Cerebrovascular Disease in Korean population (한국인의 ACE(Angiotensin-converting Enzyme) 유전자의 다형성과 뇌혈관 질환과의 관계에 대한 연구)

  • Lee Jin Woo;Lee Kyung Jin;Rho Sam Woong;Kim Jae Jong;Bae Hyung Sup;Hong Moo Chang;Shin Min Kyu;Kim Young Suk;Bae Hyun Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.4
    • /
    • pp.724-728
    • /
    • 2002
  • Angiotensin-converting enzyme (ACE) gene polymorphism, which consists of presence (insertion, I) or absence (deletion, D) of a 250-bp fragment, is associated with ischemic heart disease, renovascular disease, systemic lupus erythematosus. Subjects with the DD genotype have higher levels of circulating ACE than subjects with the II genotype and show an increased tendency towards vascular wall thickness and contribute to the development of vascular disease. But the association between I/D polymorphism of the ACE gene and cerebrovascular disease is still controversial. The aim of this study was to determine whether the DNA polymorphism of the ACE are associated with cerebrovascular disease in Korean population. The study group comprised 377 Korean patients admitted to Kyunghee Oriental Medical Center in the year of 2000 for the treatment of brain infarction or brain hemorrhage. Magnetic resonance imaging(MRI) was performed for each patient to determine the stroke phenotype, infarction or hemorrhage. The 183 subjects without evidence of brain infarction or brain hemorrhage were selected from the some ethnical population(control group). Venous blood samples were drawn from each subject for the extraction of DNA. Genotypes of ACE were determined by polymerase chain reaction amplification of the genomic DNA. Case and control genotype frequencies were compared by chi-square testing. Both the patients and the controls were classified respectively into 4 groups: age less than forty years, age forty one to fifty, age fifty one to sixty, age greater than sixty years. There were no significant differences in the distributions of ACE genotypes among the patients with infarction, with hemorrhage and controls (Infarction: D/D 15.8%, I/D 46.7%, I/I 37.5%, Hemorrhage: D/D 15.1%, I/D 46.5%, I/I 38.4%, Control: D/D 18.6%, I/D 50.3%, I/I 31.2%). There was a significant difference in the distribution of ACE genotypes between the age greater than sixty year subgroup of patient with brain hemorrhage and the control (Hemorrhage: D/D 0%, I/D 55.6%, I/I 44.4%, Control: D/D 13.0%, I/D 63.0%, I/I 23.9%; Pearson Chi-Square value 5.956, P<0.05). Furthermore, the frequency of the ACE D/D type declined with increasing age both in the patient and control group (Patient group: age < 50 D/D 21.5%, age > 50 D/D 14.42%; Control group: age < 50 D/D 21.0%, age > 50 D/D 14.2%). In conclusion there is no clear association between ACE polymorphism and cerebrovascular disease in Korean population. Although, there was a tendency for the frequency of the ACE D/D type declined with increasing age in both patients and controls.

Anterolateral Ligament of the Knee: Anatomy, Biomechanics, Techniques, and Clinical Outcome (슬관절 전외측인대의 해부학, 생역학, 수술법 및 임상적 결과)

  • Kim, Seong Hwan;Lee, Tae-Hyub;Park, Yong-Beom
    • Journal of the Korean Orthopaedic Association
    • /
    • v.55 no.4
    • /
    • pp.281-293
    • /
    • 2020
  • An anterior cruciate ligament (ACL) reconstruction is one of the most frequent surgical procedures in the knee joint, but despite the better understanding of anatomy and biomechanics, surgical reconstruction procedures still fail to restore rotational stability in 7%-16% of patients. Hence, many studies have attempted to identify the factors for rotational laxity, including the anterolateral ligament (ALL), but still showed controversies. Descriptions of the ALL anatomy are also confused by overlapping nomenclature, but it is usually known as a distinctive fiber running in an anteroinferior and oblique direction from the lateral epicondyle of the femur to the proximal anterolateral tibia, between the fibular head and Gerdy's tubercle. The importance of the ALL as a secondary restraint in the knee has been emphasized for successful ACL reconstructions that can restore rotational stability, but there is still some controversy. Some studies reported that the ALL could be a restraint to the tibial rotation, but not to anterior tibial translation. On the other hand, some studies reported that the role of ALL in rotational stability would be limited as a secondary structure because it bears loads only beyond normal biomechanical motion. The diagnosis of an ALL injury can be performed by a physical examination, radiology examination, and magnetic resonance imaging, but it should be assessed using a multimodal approach. Recently, ALL was considered one of the anterolateral complex structures, as well as the Kaplan fiber in the iliotibial band. Many studies have introduced many indications and treatment options, but there is still some debate. The treatment methods are introduced mainly as ALL reconstructions or lateral extra-articular tenodesis, which can achieve additional benefit to the knee stability. Further studies will be needed on the indications and proper surgical methods of ALL treatment.

Functional MR Imaging of Cerbral Motor Cortex: Comparison between Conventional Gradient Echo and EPI Techniques (뇌 운동피질의 기능적 영상: 고식적 Gradient Echo기법과 EPI기법간의 비교)

  • 송인찬
    • Investigative Magnetic Resonance Imaging
    • /
    • v.1 no.1
    • /
    • pp.109-113
    • /
    • 1997
  • Purpose: To evaluate the differences of functional imaging patterns between conventional spoiled gradient echo (SPGR) and echo planar imaging (EPI) methods in cerebral motor cortex activation. Materials and Methods: Functional MR imaging of cerebral motor cortex activation was examined on a 1.5T MR unit with SPGR (TRfrE/flip angle=50ms/4Oms/$30^{\circ}$, FOV=300mm, matrix $size=256{\times}256$, slice thickness=5mm) and an interleaved single shot gradient echo EPI (TRfrE/flip angle = 3000ms/40ms/$90^{\circ}$, FOV=300mm, matrix $size=128{\times}128$, slice thickness=5mm) techniques in five male healthy volunteers. A total of 160 images in one slice and 960 images in 6 slices were obtained with SPGR and EPI, respectively. A right finger movement was accomplished with a paradigm of an 8 activation/ 8 rest periods. The cross-correlation was used for a statistical mapping algorithm. We evaluated any differences of the time series and the signal intensity changes between the rest and activation periods obtained with two techniques. Also, the locations and areas of the activation sites were compared between two techniques. Results: The activation sites in the motor cortex were accurately localized with both methods. In the signal intensity changes between the rest and activation periods at the activation regions, no significant differences were found between EPI and SPGR. Signal to noise ratio (SNR) of the time series data was higher in EPI than in SPGR by two folds. Also, larger pixels were distributed over small p-values at the activation sites in EPI. Conclusions: Good quality functional MR imaging of the cerebral motor cortex activation could be obtained with both SPGR and EPI. However, EPI is preferable because it provides more precise information on hemodynamics related to neural activities than SPGR due to high sensitivity.

  • PDF