• Title/Summary/Keyword: One-pass welding

Search Result 53, Processing Time 0.024 seconds

A Study on the effect of the multi-pass SMAW welding on the characteristic of the underwater welding areas (SMAW 수중 다층용접시 용접부 특성에 관한 연구)

  • 최기용;이상율;이보영;이병훈;이상용;박성두
    • Journal of Welding and Joining
    • /
    • v.16 no.4
    • /
    • pp.55-62
    • /
    • 1998
  • While excellent joint quality has been obtained using dry chamber underwater welding methods, the size limitations imposed by this process restrict its use for underwater construction work. The wet underwater shielded metal-arc welding eliminates this restriction but suffers from poor weld properties by the 1-pass bead-on-plate welding due to the excessive diffusible hydrogen. On the other hand, in the wet underwater welding, it is well known that the quantity of diffusible hydrogen in multi-pass welded parts reduce to less than that in 1-pass welded parts. Therefore, in this paper, welding experiments are made the 3-pass bead-on-plate welds by using TMCP and normalized steel plates and E4301 and cellulose coated electrode. After that, The amounts of the hydrogen absorbed into the 3-pass welded area were measured according to the JIS Z 3118 specification. The microstructural changes as well as the microhardness distribution after the underwater 3-pass welding were also investigated using Vickers microhardness tester and S.E.M and O.M. The results indicated that the quantity of diffusible hydrogen in 3-pass welded areas was reduced little less than a half of one of that in 1-pass welded areas at the specific welding condition. As a result, the cold cracking of 3-pass welded areas decreased by reduced effect of diffusible hydrogen. In the underwater 3-pass welding, the micrography of cold cracking fracture surface showed mainly the cleavage of hydrogen embrittlement.

  • PDF

The Multipass Joint Tracking System by Vision Sensor (비전센서를 이용한 다층 용접선 추적 시스템)

  • Lee, Jeong-Ick;Koh, Byung-Kab
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.14-23
    • /
    • 2007
  • Welding fabrication invariantly involves three district sequential steps: preparation, actual process execution and post-weld inspection. One of the major problems in automating these steps and developing autonomous welding system is the lack of proper sensing strategies. Conventionally, machine vision is used in robotic arc welding only for the correction of pre-taught welding paths in single pass. However, in this paper, multipass tracking more than single pass tracking is performed by conventional seam tracking algorithm and developed one. And tracking performances of two algorithm are compared in multipass tracking. As the result, tracking performance in multi-pass welding shows superior conventional seam tracking algorithm to developed one.

Development of Distortion Analysis Method for Multi-pass Butt-welding Based on Shell Element (다층 맞대기용접의 쉘 요소 기반 변형해석법 개발)

  • Ha, Yun-Sok;Yang, Jin-Hyuk
    • Journal of Welding and Joining
    • /
    • v.28 no.1
    • /
    • pp.54-59
    • /
    • 2010
  • Ship Blocks are assembled by welding, and among them, welding between large blocks (Pre-erection stage) is used as feature of butt. In this process, local material has a experience of thermal cycle and become finally shrunk. As for inconsistency of shrunk weldments and adjacent regions, ship structure would be deformed locally and globally. Thermal distortion analyses are done for control of these processes, and methodologies capable of ship block size among them are using 2-D shell element in FEM. A shell element takes charge of plate, so it has its thickness which is important for angular distortion by welding. By the way, a butt-welding consists normally of several passes, and weldment thickness are different at each pass. If a calculated final one-time welding shrinkage is acting on the shell element whose thickness is same as it of plate, then deformation value must be underestimated. This research developed a methodology that total deformation after multi-pass welding can be analyzed by one time at shell element having original thickness of its plate. We use the SDB thermal distortion analysis method and verified by several experiment. The both experimental and analysis results showed good agreements.

Residual Stress and Fracture Analysis of Thick Plate for Partial Penetration Multi-Pass Weldment

  • Kim, Seok;Shim, Yong-Lae;Song, Jung-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1033-1039
    • /
    • 2002
  • Partial penetration welding joint refers to the groove weld that applies to the one side welding which does not use steel backing and to both side welding without back gouging, that is, the partial penetration welding joint leaves an unwelded portion at the root of the welding area. In this study, we analyzed the residual stress and fracture on the thick metal plates that introduced the partial penetration welding method. According to the above-mentioned welding method, we could draw a conclusion that longitudinal stress and traverse stress occurred around the welding area are so minimal and do not affect any influence. We also performed the fracture behavior evaluation on the partial penetration multi pass welding with 25.4 mm thick plate by using the J-integral, which finally led us the conclusion that the partial penetration multi-pass welding method is more applicable and effective in handling the root face with less than 6.35 mm.

High Current Arc Welding Technology of Aluminum Alloy (알루미늄 합금의 대전류 아크용접 기술)

  • Choi, Young-Bae;Kang, Mun-Jin;Kim, Dong-Cheol;Hwang, In-Sung
    • Journal of Welding and Joining
    • /
    • v.31 no.1
    • /
    • pp.21-25
    • /
    • 2013
  • Aluminum alloy, Al5083-O, is one of candidate materials for the LNG storage tank, because of its excellent weldability, cryogenic characteristics, and corrosion resistance. The good weldability of Al5083-O is very important in LNG storage tank manufacturing. In this study, high current metal inert gas(MIG) welding process was used to get one pass welding of thick plate aluminum alloy. Bead on plate(BOP) welding was performed to evaluate the effect of welding conditions on the height of bead and depth of penetration. The optimum welding conditions were derived to get one pass welding of the thickness of 14.5mm. The mechanical properties of the welded joint were evaluated. The cross-sectional macro test, tensile test, and bending test satisfied the class rule.

High Current MIG Welding of Al 5083 Alloy under Ar/He Mixed Gas Shielding (Ar/He 보호가스분위기에서 Al 5083 합금의 대전류 MIG 용접특성)

  • Choi, Young-Bae;Hwang, In-Sung;Kang, Mun-Jin;Kim, Dong-Cheol
    • Journal of Welding and Joining
    • /
    • v.32 no.1
    • /
    • pp.87-92
    • /
    • 2014
  • Recently, use of thick Al 5083 plate has increased in production of LNG storage tank. In general, multi-pass welding has been used to achieve sufficient penetration in thick plate welding. High current welding which enables high deposition and deep penetration is preferred in thick plate welding because the increase of number of pass increases manufacturing cost and formation of weld defect. In this study, welding characteristics according to various Ar/He shielding gas composition was investigated in high current MIG welding. The bead-on-plate welding and V groove welding were conducted on Al 5083 alloy with a thickness of .25 mm. The effect of shielding gas composition on bead shape was evaluated and proper shielding gas composition was proposed. Also arc stability was examined under selected shielding gas composition. One side-one pass welding experiments were conducted for V groove specimen with a thickness of 25 mm. Mechanical properties and hardness profiles were measured for the V groove specimens.

Laboratory and Meta Analysis for 9% NI Steel of Liquified Natural Gas Carrier (LNG 저장 탱크 운반선 9% Ni Steel의 용접성에 대한 실험분석과 메타분석 연구)

  • Park, Sang Heup;Ahn, Duck Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.670-677
    • /
    • 2016
  • Laboratory and meta-analyses were done for 9% NI Steel for use in a liquefied natural gas carrier. The meta-analysis is based on a previous study. The laboratory analysis examines the effects of a single pass and multiple passes on the tensile strength through an impulse-response test. The tensile strength increased from pass one to pass three and decreased from pass four to pass ten. The pass and multi-pass welding had a positive effect on the tensile strength. Lastly, the welding and tensile time had a positive effect on the tensile strength.

Residual Stress and Fracture Analysis of Thick Plate for Partial Penetration Multi-pass Weldment (후판 부분용입 다층용접의 잔류음력 및 파괴 해석)

  • Kim, Seok;Shim, Yong-Lae;Bae, Sung-In;Song, Jung-Il
    • Journal of Welding and Joining
    • /
    • v.19 no.6
    • /
    • pp.636-642
    • /
    • 2001
  • Partial penetration welding joint defines the groove welds that applies the one side welding which does not use steel backing and both side welding without back gouging, that is, the partial penetration welding joint leaves an unwelded portion at the root of the welding area. In this study, we analyzed the residual stress and fracture on the thick metal plates that introduced the partial penetration welding method. As results of using above mentioned welding method, we could draw a conclusion that longitudinal stress and traverse stress occurred around the welding area was so minimal and did not affect any influence. We also performed the fracture behavior evaluation on the partial penetration multi-pass welding with 25.4mm thick plate by using theJ-integral, which finally led us the conclusion that the partial penetration multi -pass welding method is more applicable and effective in handling the root face with less than 6.35mm.

  • PDF

Study on the tensile restraint crack characteristics in underwater welds of marine steel plates (선용 강판 수중용접부의 인장 구속 균열 특성에 관한 연구)

  • 오세규;강문호;김민남
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.45-52
    • /
    • 1987
  • Generally the factors affected largely by the cold cracking sensitivity of the weld are the quantity of the diffusible hydrogen, the brittleness and hardness of the bond area and the tensile restraint stress. These factors have relation each other, and if we can reduce one of these factors, it becomes instrumental to the root cracks prevention of weld. This study deals with the gravity type-underwater-welding of KR Grade A-3 marine steel plate using E4303 welding electrode in order to compare wet-underwater-welding with in-air- welding, resulting in obtaining the tensile restraint characteristics, the hardness distribution, the quantity of diffusible hydrogen and the macro- and micro-crack properties in both underwater and in-air welds. The main results obtained are as follows: 1) The quantity of diffusible hydrogen measured for 48 hours is about 18cc/100g-weld-metal for the in-air-weld of one pass and about 48cc/100g-weld-metal for the underwater-weld of one pass which is about 3 times penetration of diffusible hydrogen compairing with the case of the in-air-weld. However, it was experimentally confirmed that, by the multi-pass welding of 2 to 5 passes, the diffusible hydrogen in the underwater weld metal can be reduced as much as 27 to 49%. 2) The hardness of the weld metal indicates the highest value in the heat affected zones of underwater weld for more rapid cooling rate, resulting in the higher sensitivity of cold cracking. So, it is desirable to soften the higher hardness in the HAZ by tempering effect such as the multi-pass welding in the underwater welding. 3) At the bond vicinity of the underwater weld HAZ, micro cracks were found as resulted by both more rapid cooling rate and more diffusible hydrogen and also by the stress corrosion cracking under the tensile restraint stress in the underwater. But this could be prevented by the tempering effect of the following weld bead such as the multi-pass welding.

  • PDF

Solidification Crackin in Root Pass for One-side Welding of 590MPa Class Steel for Pressure Vessels by FCAW (FCAW에 의한 590MPa급 고장력압력용기강의 초층편면용접부에서 발생하는 고온균열)

  • 김우열;한일욱;유덕상;방한서;안용식;박화순
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.47-54
    • /
    • 1999
  • It is well known that solidification cracking often occurs in welds of root pass for one-side welding under the conditions of high welding currents and speeds. In this study, the solidification in 590MPa class steel for pressure vessels SPPV490 was investigated by using flux-cored arc welding(FCAW) with 4 types of welding wires and welding conditions of 200∼280A and 2.8∼ 4.2mm/sec. In order to compared the result of cracking in SPPV490, 0.2%C steel for welded structure of SWS400 and 0.45%C steel for machine structural SM45C were also used as base metals. As the results, all the cracks formed in some welding conditions were observed near the center of weld bead. The solidification cracks were generally initiated near the upper surface of bead and propagated toward the inner part. The solidification cracking generally increased with welding current and welding speed in the same base metal and welding material. In cracking susceptibility, SPPV490 showed higher cracking susceptibility than SWS400 in all welding conditions and welding materials. It was considered that cracking susceptibility could not be evaluated with the hardness of weld metals. The cracking ratio increased with decreasing of a/b(a and b; the width of the upper surface and the back surface of the bead) as shape factor of bead. The cracking tendency with shape factor of bead was extended under the condition of higher welding currents.

  • PDF