• 제목/요약/키워드: One-hand gesture

검색결과 71건 처리시간 0.032초

로봇 제어를 위한 의미 있는 손동작 추출 방법 (An Extraction Method of Meaningful Hand Gesture for a Robot Control)

  • 김아람;이상용
    • 한국지능시스템학회논문지
    • /
    • 제27권2호
    • /
    • pp.126-131
    • /
    • 2017
  • 본 논문에서는 손짓을 이용하여 로봇에게 명령을 내릴 때, 사용자의 여러 가지 손짓 중 의미 있는 동작을 추출하기 위한 방법을 제시한다. 로봇에게 명령을 내릴 때, 사람들의 손짓은 준비동작, 본 동작, 마무리 동작으로 구분할 수 있다. 여기에서 본 동작이 로봇에게 명령을 전달하는 의미 있는 동작이고 다른 동작은 그 동작을 위한 의미 없는 보조 동작이다. 따라서 연속적인 손짓에서 본 동작만을 추출해야 한다. 또한 사람들은 무위식적으로 손을 움직일 수 있는데 이러한 동작들 역시 의미가 없는 동작으로 로봇이 판단하여야 한다. 본 연구에서는 키넥트 센서를 이용하여 획득한 거리영상에서 사람의 골격자료를 획득하여 손을 추출하고, 칼만필터를 이용하여 손의 위치를 추적하면서 의미 있는 손동작과 의미 없는 손동작을 구분하고 은닉 마코프 모델을 이용하여 손짓을 인식한다.

Navigation of a Mobile Robot Using the Hand Gesture Recognition

  • Kim, Il-Myung;Kim, Wan-Cheol;Yun, Jae-Mu;Jin, Tae-Seok;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.126.3-126
    • /
    • 2001
  • A new method to govern the navigation of a mobile robot is proposed based on the following two procedures: one is to achieve vision information by using a 2 D-O-F camera as a communicating medium between a man and a mobile robot and the other is to analyze and to behave according to the recognized hand gesture commands. In the previous researches, mobile robots are passively to move through landmarks, beacons, etc. To incorporate various changes of situation, a new control system manages the dynamical navigation of a mobile robot. Moreover, without any generally used expensive equipments or complex algorithms for hand gesture recognition, a reliable hand gesture recognition system is efficiently implemented to convey the human commands to the mobile robot with a few constraints.

  • PDF

A Vision-Based Method to Find Fingertips in a Closed Hand

  • Chaudhary, Ankit;Vatwani, Kapil;Agrawal, Tushar;Raheja, J.L.
    • Journal of Information Processing Systems
    • /
    • 제8권3호
    • /
    • pp.399-408
    • /
    • 2012
  • Hand gesture recognition is an important area of research in the field of Human Computer Interaction (HCI). The geometric attributes of the hand play an important role in hand shape reconstruction and gesture recognition. That said, fingertips are one of the important attributes for the detection of hand gestures and can provide valuable information from hand images. Many methods are available in scientific literature for fingertips detection with an open hand but very poor results are available for fingertips detection when the hand is closed. This paper presents a new method for the detection of fingertips in a closed hand using the corner detection method and an advanced edge detection algorithm. It is important to note that the skin color segmentation methodology did not work for fingertips detection in a closed hand. Thus the proposed method applied Gabor filter techniques for the detection of edges and then applied the corner detection algorithm for the detection of fingertips through the edges. To check the accuracy of the method, this method was tested on a vast number of images taken with a webcam. The method resulted in a higher accuracy rate of detections from the images. The method was further implemented on video for testing its validity on real time image capturing. These closed hand fingertips detection would help in controlling an electro-mechanical robotic hand via hand gesture in a natural way.

Hand Gesture Segmentation Method using a Wrist-Worn Wearable Device

  • Lee, Dong-Woo;Son, Yong-Ki;Kim, Bae-Sun;Kim, Minkyu;Jeong, Hyun-Tae;Cho, Il-Yeon
    • 대한인간공학회지
    • /
    • 제34권5호
    • /
    • pp.541-548
    • /
    • 2015
  • Objective: We introduce a hand gesture segmentation method using a wrist-worn wearable device which can recognize simple gestures of clenching and unclenching ones' fist. Background: There are many types of smart watches and fitness bands in the markets. And most of them already adopt a gesture interaction to provide ease of use. However, there are many cases in which the malfunction is difficult to distinguish between the user's gesture commands and user's daily life motion. It is needed to develop a simple and clear gesture segmentation method to improve the gesture interaction performance. Method: At first, we defined the gestures of making a fist (start of gesture command) and opening one's fist (end of gesture command) as segmentation gestures to distinguish a gesture. The gestures of clenching and unclenching one's fist are simple and intuitive. And we also designed a single gesture consisting of a set of making a fist, a command gesture, and opening one's fist in order. To detect segmentation gestures at the bottom of the wrist, we used a wrist strap on which an array of infrared sensors (emitters and receivers) were mounted. When a user takes gestures of making a fist and opening one's a fist, this changes the shape of the bottom of the wrist, and simultaneously changes the reflected amount of the infrared light detected by the receiver sensor. Results: An experiment was conducted in order to evaluate gesture segmentation performance. 12 participants took part in the experiment: 10 males, and 2 females with an average age of 38. The recognition rates of the segmentation gestures, clenching and unclenching one's fist, are 99.58% and 100%, respectively. Conclusion: Through the experiment, we have evaluated gesture segmentation performance and its usability. The experimental results show a potential for our suggested segmentation method in the future. Application: The results of this study can be used to develop guidelines to prevent injury in auto workers at mission assembly plants.

연속 영상에서의 얼굴표정 및 제스처 인식 (Recognizing Human Facial Expressions and Gesture from Image Sequence)

  • 한영환;홍승홍
    • 대한의용생체공학회:의공학회지
    • /
    • 제20권4호
    • /
    • pp.419-425
    • /
    • 1999
  • 본 논문에서는 흑백 동영상을 사용하여 얼굴 표정 및 제스처를 실시간으로 인식하는 시스템을 개발하였다. 얼굴 인식분야에서는 형판 정합법과 얼굴의 기하학적 고찰에 의한 사전지식을 바탕으로 한 방법을 혼합하여 사용하였다. 혼합 방법에 의해 입력영상에서 얼굴 부위만을 제한하였으며, 이 영역에 옵티컬 플로우를 적용하여 얼굴 표정을 인식하였다. 제스처 인식에서는 엔트로피를 분석하여 복잡한 배경영상으로부터 손 영역을 분리하는 방법을 제안하였으며 , 이 방법을 개선하여 손동작에 대한 제스처를 인식하였다. 실험 결과, 입력 영상의 배경에 크게 영향을 받지 않고서도 동일 영상에서 움직임이 큰 부위를 검출하여 얼굴의 표정 및 손 제스처를 실시간적으로 인식할 수 있었다.

  • PDF

웨어러블 응용을 위한 CNN 기반 손 제스처 인식 (CNN-Based Hand Gesture Recognition for Wearable Applications)

  • 문현철;양안나;김재곤
    • 방송공학회논문지
    • /
    • 제23권2호
    • /
    • pp.246-252
    • /
    • 2018
  • 제스처는 스마트 글라스 등 웨어러블 기기의 NUI(Natural User Interface)로 주목받고 있다. 최근 MPEG에서는 IoT(Internet of Things) 및 웨어러블 환경에서의 효율적인 미디어 소비를 지원하기 위한 IoMT(Internet of Media Things) 표준화를 진행하고 있다. IoMT에서는 손 제스처 검출과 인식이 별도의 기기에서 수행되는 것을 가정하고 이들 모듈간의 인터페이스 규격을 제공하고 있다. 한편, 최근 인식률 개선을 위하여 딥러닝 기반의 손 제스처 인식 기법 또한 활발히 연구되고 있다. 본 논문에서는 IoMT의 유스 케이스(use case)의 하나인 웨어러블 기기에서의 미디어 소비 등 다양한 응용을 위하여 CNN(Convolutional Neural Network) 기반의 손 제스처 인식 기법을 제시한다. 제시된 기법은 스마트 글래스로 획득한 스테레오 비디오로부터 구한 깊이(depth) 정보와 색 정보를 이용하여 손 윤곽선을 검출하고, 검출된 손 윤곽선 영상을 데이터 셋으로 구성하여 CNN을 학습한 후, 이를 바탕으로 입력 손 윤곽선 영상의 제스처를 인식한다. 실험결과 제안기법은 95%의 손 제스처 인식율를 얻을 수 있음을 확인하였다.

다중 도플러 레이다와 머신러닝을 이용한 손동작 인식 (Hand Gesture Classification Using Multiple Doppler Radar and Machine Learning)

  • 백경진;장병준
    • 한국전자파학회논문지
    • /
    • 제28권1호
    • /
    • pp.33-41
    • /
    • 2017
  • 본 논문에서는 사람의 손동작을 이용해 전자기기를 제어할 수 있도록 다중 도플러 레이다와 머신러닝의 일종인 SVM (Support Vector Machine)을 이용한 손동작 인식 기술을 제안하였다. 하나의 도플러 레이다는 간단한 손동작만을 인식할 수 있는데 반해, 다중 도플러 레이다는 레이다 위치에 따라 각각 다른 도플러 효과가 발생되므로, 이를 이용하여 다양한 손동작을 인식할 수 있다. 또한, 머신러닝 기법을 이용하여 손동작을 분류하면 손동작 인식의 성공률을 높일 수 있다. 다중 도플러 레이다와 머신러닝을 이용한 손동작 인식 시스템의 구현 가능성을 확인하기 위하여 두 개의 도플러 레이다, NI DAQ USB-6008, MATLAB을 이용한 실험 장치를 구성하였다. 구현된 실험 장치를 이용하여 Push, Pull, Right Slide 및 Left Slide의 4가지 손동작 인식 실험을 수행하였고, SVM 모델을 적용하여 손동작 인식의 높은 정확도를 확인하였다.

The Effect of Gesture-Command Pairing Condition on Learnability when Interacting with TV

  • Jo, Chun-Ik;Lim, Ji-Hyoun;Park, Jun
    • 대한인간공학회지
    • /
    • 제31권4호
    • /
    • pp.525-531
    • /
    • 2012
  • Objective: The aim of this study is to investigate learnability of gestures-commands pair when people use gestures to control a device. Background: In vision-based gesture recognition system, selecting gesture-command pairing is critical for its usability in learning. Subjective preference and its agreement score, used in previous study(Lim et al., 2012) was used to group four gesture-command pairings. To quantify the learnability, two learning models, average time model and marginal time model, were used. Method: Two sets of eight gestures, total sixteen gestures were listed by agreement score and preference data. Fourteen participants divided into two groups, memorized each set of gesture-command pair and performed gesture. For a given command, time to recall the paired gesture was collected. Results: The average recall time for initial trials were differed by preference and agreement score as well as the learning rate R driven by the two learning models. Conclusion: Preference rate agreement score showed influence on learning of gesture-command pairs. Application: This study could be applied to any device considered to adopt gesture interaction system for device control.

기계 장치와의 상호작용을 위한 실시간 저비용 손동작 제어 시스템 (A Real Time Low-Cost Hand Gesture Control System for Interaction with Mechanical Device)

  • 황태훈;김진헌
    • 전기전자학회논문지
    • /
    • 제23권4호
    • /
    • pp.1423-1429
    • /
    • 2019
  • 최근에, 효율적인 상호작용을 지원하는 시스템 인 휴먼 머신 인터페이스(HMI)가 인기를 끌고있다. 본 논문에서는 차량 상호작용방법 중 하나로 새로운 실시간 저비용 손동작 제어 시스템을 제안한다. 계산 시간을 줄이기 위해 RGB 카메라를 사용하여 손 영역을 감지할 때 많은 계산이 필요하므로 TOF (Time-of-Flight) 카메라를 사용하여 깊이 정보를 취득한다. 또한, 푸리에 기술자를 사용하여 학습 모델을 줄였다. 푸리에 디스크립터는 전체 이미지에서 적은 수의 포인트만 사용하므로 학습 모델을 소형화 할 수 있다. 제안 된 기법의 성능을 평가하기 위해 데스크탑과 라즈베리 pi 2의 속도를 비교했다. 실험 결과에 따르면 소형 임베디드와 데스크탑의 성능 차이는 크지 않다. 제스처 인식 실험에서 95.16 %의 인식률이 확인되었다.

손 제스쳐 인식을 활용한 VR 결제 시스템 연구 (A Study on the VR Payment System using Hand Gesture Recognition)

  • 김경환;이원형
    • 한국컴퓨터게임학회논문지
    • /
    • 제31권4호
    • /
    • pp.129-135
    • /
    • 2018
  • 실생활에서 사용되는 결제 시스템에는 전자 사인, QR 코드, 바코드들이 사용된다. VR 환경 내에서 구현되어 있는 결제 시스템은 점점 연구가 시작되고 있다. 본 논문은 기존의 결제 시스템을 VR 환경에서 구현하기 위해 손 제스쳐 인식을 이용한 VR 전자사인 시스템을 제안한다. VR 시스템에서는 키보드를 두드리거나 마우스를 건드릴 수 없는 상황이다. VR 컨트롤러를 가지고 결제 시스템을 구성하기 위한 방법에는 여러 가지가 있을 수 있다. 손 제스처 인식을 이용한 전자사인이 그 중 하나인데, 손 제스쳐 인식에는 크게 Warping Methods, Statistical Methods, Template Matching 방법으로 분류할 수 있다. 본 논문에서는 Template Matching 방법에 속한 $p 알고리즘을 이용하여, VR에서 결제 시스템을 구성하였다. 그리고, VR 환경을 조성하기 위해서 Unity3D와 Vive 장비를 이용해서 실제 결제가 이루어지는 paypal 시스템을 구현하였다.