• Title/Summary/Keyword: One-dimensional simulations

Search Result 301, Processing Time 0.025 seconds

A Study on the Development of 2-Dimensional Numerical Wave Tank by the High-Order Spectral Method (고차 스펙트럴법에 의한 2차원 수치 파수조 개발에 관한 연구)

  • Y.J. Kim;J.H. Hwang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.131-139
    • /
    • 1992
  • By introducing a body potential, the high-oder spectal method of Dommermuth and Yue(1987) is extended to treat the nonlinear interactions between the free surface and the submerged cylinder. A 2-dimensional numerical wave tank is developed based on this numerical scheme, and applied to the wave resistance problem and the wave maker problem. In the simulations, it is shown that the transient waves due to the impulsive start of the body motion make a practical obstacle to the acquisition of useful data from the numerical experiments. Gradual starting procedures are devised, and successful result of the quasi-steady state or the uniform regular wave group was obtained. Within the author's present knowledge, the present numerical scheme is one of the most efficient numerical schemes which can treat the nonlinear interactions between the free surface and the body motion in time-domain.

  • PDF

Numerical modeling of two parallel tunnels interaction using three-dimensional Finite Elements Method

  • Nawel, Bousbia;Salah, Messast
    • Geomechanics and Engineering
    • /
    • v.9 no.6
    • /
    • pp.775-791
    • /
    • 2015
  • Due to the extension of communication ways (metro, highways, railways), hence, to improve traffic flow imposes often the difficult crossing that generally drive to the construction of underground works (tunnel, water conveyance tunnel...) plays a major role in the redevelopment of urban areas. This study is focused on the assessment of the interaction response of parallel tunnels, so this study uses the results from the simulation of two tunnels to illustrate a few observations that may aid in practical designs. In this article, simultaneous drilling of highway's twin tunnels is simulated by means of Finite Element Method (FEM) implemented in Plaxis program. So the treated subject appears in a setting of geotechnical where one can be to construct several tunnels sometimes in a ground of weak mechanical characteristics. The objective of this study is to simulate numerically the interaction effects caused by construction of two parallels tunnels. This is an important factor in the study of the total answer of the problem interaction between parallels underground works. The importance of the effects transmitted is function of several parameters as the type of the works, and the mechanical characteristics (tunnel size, depth, and the relative position between two tunnels, lining thickness...). This article describes numerical analyses of two parallels tunnels interaction. This study will be applied to a real case of a section tunnel T4 of the highway East-West (Algeria); the study presented below comprises a series of numerical simulations of two tunnels using the computer program Plaxis which is used in the analyses is based on Finite Element Method.

Two-dimensional OCDMA Encoder/Decoder Composed of Double Ring Add/Drop Filters and All-pass Delay Filters (이중 링 Add/Drop 필터와 All-pass 지연 필터로 구성된 이차원 OCDMA 인코더/디코더)

  • Chung, Youngchul
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.3
    • /
    • pp.106-112
    • /
    • 2022
  • A two-dimensional optical code division multiple access (OCDMA) encoder/decoder, which is composed of add/drop filters and all-pass filters for delay operation, is proposed. An example design is presented, and its feasibility is illustrated through numerical simulations. The chip area of the proposed OCDMA encoder/decoder could be about one-third that of a previous OCDMA device employing delay waveguides. Its performance is numerically investigated using the transfer-matrix method combined with the fast Fourier transform. The autocorrelation peak level over the maximum cross-correlation level for incorrect wavelength hopping and spectral phase code combinations is greater than 3 at the center of the correctly decoded pulse, which assures a bit error rate lower than 10-3, corresponding to the forward error-correction limit.

Numerical Simulation on Laminar Flow past a Rotating Circular Cylinder (회전하는 원형 주상체 주위의 층류 유동장의 수치 시뮬레이션)

  • MooN JIN-KooK;PARK JONG-CHUN;YOON HYUN-SIK;CHUN HO-HWAN
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.222-228
    • /
    • 2004
  • The effects of rotation on the unsteady laminar flow past a circular cylinder is numerically investigated in the present study. We obtained the numerical solutions for unsteady two-dimensional governing equation for the flow using two different numerical schemes. One is an accurate spectral method and another is finite volume method. Above all, the flow around a stationary circular cylinder is investigated to understand the basic phenomenon of flow separation, bluff body wake. Also, the validation of our own codes, expecially based on FVM, is carried out by the comparison of results obtained from our simulations using two different schemes and previous numerical and experimental studies. By the effect of rotation, the mean lift increases and drag deceases, which well represent the previous study.

  • PDF

DEVELOPMENT OF AN UNSTRUCTURED HYBRID MESH FLOW SOLVER FOR 3-D STEADY/UNSTEADY INCOMPRESSIBLE FLOW SIMULATIONS (삼차원 정상/비정상 비압축성 유동해석을 위한 비정렬 혼합격자계 기반의 유동해석 코드 개발)

  • Jung, Mun-Seung;Kwon, Oh-Joon
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.27-41
    • /
    • 2008
  • An unstructured hybrid mesh flow solver has been developed for the simulation of three-dimensional steady and unsteady incompressible flow fields. The incompressible Navier-Stokes equations with an artificial compressibility method were discretized by using a node-based finite-volume method. For the unsteady time-accurate computation, a dual-time stepping method was adopted to satisfy a divergence-free flow field at each physical time step. An implicit time integration method with local time stepping was implemented to accelerate the convergence in the pseudo-time sub-iteration procedure. The one-equation Spalart-Allmaras turbulence model has been adopted to solve high-Reynolds number flow fields. The flow solver was parallelized to minimize the CPU time and to overcome the computational overhead. This method has been applied to calculate steady and unsteady flow fields around submarine configurations and a 3-D infinite cylinder. Validations were made by comparing the predicted results with those of experiments or other numerical results. It was demonstrated that the present method is efficient and robust for the prediction of steady and unsteady incompressible flow fields.

Asynchronous Multilevel Search Strategy for Fast Acquisition of AltBOC Signals

  • Kim, Binhee;Kong, Seung-Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.4
    • /
    • pp.161-171
    • /
    • 2015
  • Alternative binary offset carrier (AltBOC) signals can be approximated by four synchronized direct sequence spread spectrum (DSSS) signals, each pair of which is a quadrature phase shift keyed (QPSK) signal at a different frequency. Therefore, depending on the strength of an incoming AltBOC signal, an acquisition technique can reduce the mean acquisition time (MAT) by searching the four DSSS signals asynchronously; the search for each of the four DSSS signals can start at one of the evenly separated hypotheses on the two-dimensional hypothesis space. And detection sensitivity can be improved by multiple levels when different numbers of search results for the same hypothesis are combined. In this paper, we propose a fast AltBOC acquisition technique that has an asynchronous search strategy and efficiently utilizes the output of the four search results to increase the sensitivity level when sensitivity improvement is needed. We provide a complete theoretical analysis and demonstrate with numerous Monte Carlo simulations that the MAT of the proposed technique is much smaller than conventional AltBOC acquisition techniques.

A Visual Calibration Scheme for Off-Line Programming of SCARA Robots (스카라 로봇의 오프라인 프로그래밍을 위한 시각정보 보정기법)

  • Park, Chang-Kyoo;Son, Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.62-72
    • /
    • 1997
  • High flexibility and productivity using industrial robots are being achieved in manufacturing lines with off-line robot programmings. A good off-line programming system should have functions of robot modelling, trajectory planning, graphical teach-in, kinematic and dynamic simulations. Simulated results, however, can hardly be applied to on-line tasks until any calibration procedure is accompained. This paper proposes a visual calibration scheme in order to provide a calibration tool for our own off-line programming system of SCARA robots. The suggested scheme is based on the position-based visual servoings, and the perspective projection. The scheme requires only one camera as it uses saved kinematic data for three-dimensional visual calibration. Predicted images are generated and then compared with camera images for updating positions and orientations of objects. The scheme is simple and effective enough to be used in real time robot programming.

Theoretical Studies of the Electrical Discharge Characteristics of Sulfur Hexafluoride

  • Radmilovic-Radjenovic, Marija;Radjenovic, Branislav
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.288-294
    • /
    • 2017
  • This paper contains results of the theoretical studies of the electrical breakdown properties in sulfur hexafluoride. Since the strong interaction of high-energy electrons with the polyatomic sulfur hexafluoride molecule causes their rapid deceleration to the lower energy of electron capture and dissociative attachment, the breakdown is only possible at relatively high field strengths. From the breakdown voltage curves, the effective yields that characterize secondary electron productions have been estimated. Values of the effective yields are found to be more consistent if they are derived from the experimentally determined values of the ionization coefficient and the breakdown voltages. In addition, simulations were performed using an one-dimensional Particle-in-cell/Monte Carlo collision code. The obtained simulation results agree well with the available experimental data with an error margin of less than 10% over a wide range of pressures and the gap sizes. The differences between measurements and calculations can be attributed to the differences between simulation and experimental conditions. Simulation results are also compared with the theoretical predictions obtained by using expression that describes linear dependence of the breakdown voltage in sulfur hexafluoride on the pressure and the gap size product.

Centrifugal Infiltration Process of Fibrous Tubular Preform by Al-Cu Alloy

  • Li, Yanhong;Wang, Kai;Su, Yongkang;Hu, Guoxin
    • Advanced Composite Materials
    • /
    • v.18 no.4
    • /
    • pp.381-394
    • /
    • 2009
  • The kinetics of centrifugal infiltration of fibrous tubular preform is built theoretically, and simulations are conducted to study the effects of various casting conditions on infiltration kinetics and macrosegregation by combining with the energy, mass and kinetic equations. A similarity way is used to simplify the one-dimensional model and the parameter is ascertained by an iterative method. The results indicate that the increase of superheat, initial preform temperature, porosity tends to enlarge the remelting region and decrease copper solute concentration at the infiltration front. Higher angular velocity leads to smaller remelting region and solute concentration at the tip. The pressure in the infiltrated region increase significantly when the angular velocity is much higher, which requires a stronger preform. It is observed that the pressure distribution is mainly determined by the angular velocity, and the macrosegregation in the centrifugal casting is greatly dependent on the superheat of inlet metal matrix, initial temperature and porosity of the preform, and the angular velocity.

PRACTICAL MODELLING OF STONE-COLUMN REINFORCED GROUND

  • Tan By S.A.;Tjahyono S.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.291-311
    • /
    • 2006
  • The acceleration of consolidation by stone columns was mostly analysed within the framework of a basic unit cell model (i.e. a cylindrical soil body around a column). A method of converting the axisymmetric unit cell into the equivalent plane-strain model would be required for two-dimensional numerical modelling of multi-column field applications. This paper proposes two practical simplified conversion methods to obtain the equivalent plane-strain model of the unit cell, and investigates their applicability to multi-column reinforced ground. In the first conversion method, the soil permeability is matched according to an analytical equation, whereas in the second method, the column width is matched based on the equivalence of column area. The validity of these methods is tested by comparison with the numerical results of unit-cell simulations and with the field data from an embankment case history. The results show that for the case of linear-elastic material modelling, both methods produce reasonably accurate long-term consolidation settlements, whereas for the case of elasto-plastic material modelling, the second method is preferable as the first one gives erroneously lower long-term settlements, where plastic yielding of stone column are ignored.

  • PDF