• Title/Summary/Keyword: One-dimensional Performance Model

Search Result 374, Processing Time 0.133 seconds

A Numerical Study of Thermal Performance in Ventilated Disk Brake (통기식 디스크 브레이크의 방열 성능에 관한 수치적 연구)

  • 김진택;백병준
    • Tribology and Lubricants
    • /
    • v.17 no.5
    • /
    • pp.358-364
    • /
    • 2001
  • Disk brake system transforms a large amount of kinetic energy to thermal energy in a short time. As the size and speed of automotive increases in recent years, the disk brakes absorbs more thermal energy. And this thermal energy can cause an unacceptable braking performance due to the high transient temperature, that is attained at the friction surface of brake disk and pad. Although these high temperatures are one of the biggest problems. In this study, the overall thermal behavior of ventilated disk brake system was investigated by numerical method. The 3-Dimensional unsteady model was simulated by using a general purpose software package “FLUENT” to obtain the temperature distributions of disk and pad. The model includes the more realistic braking method, which repeats braking and release. The effects of several parameters such as the repeated braking, inlet air velocity and thermal conductivity on the temperature distribution were investigated.

The AUV design based on component modeling and simulation

  • Kebriaee, Azadeh;Nasiri, Hamidreza
    • Ocean Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.83-97
    • /
    • 2012
  • In the present work, design procedure and computer simulation of an AUV are documented briefly. The design procedure containing the design of propulsion system and CFD simulation of hydrodynamics behavior of the hull leads to achieve an optimum mechanical performance of AUV system. After designing, a comprehensive one dimensional model including motor, propeller, and AUV hull behavior simulates the whole dynamics of AUV system. In this design, to select the optimum AUV hull, several noses and tails are examined by CFD tools and the brushless motor is selected based on the first order model of DC electrical motor. By calculating thrust and velocity in functional point, OpenProp as a tool to select the optimum propeller is applied and the characteristics of appropriate propeller are determined. Finally, a computer program is developed to simulate the interaction between different components of AUV. The simulation leads to determine the initial acceleration, final velocity, and angular velocity of electrical motor and propeller. Results show the final AUV performance point is in the maximum efficiency regions of DC electrical motor and propeller.

The Analysis of Heat Transfer through the Multi-layered Wall of the Insulating Package

  • Choi, Seung-Jin
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.12 no.1
    • /
    • pp.45-53
    • /
    • 2006
  • Thermal insulation is used in a variety of applications to protect temperature sensitive products from thermal damage. Several factors affect the performance of insulation packages. Among these factors, the thermal resistance of the insulating wall is the most important factor to determine the performance of the insulating package. In many cases, insulating wall consists of multi-layered structure and the heat transfer through this structure is a very complex process. In this study, an one-dimensional mathematical model, which includes all of the heat transfer principles covering conduction, convection and radiation in multi-layered structure, were developed. Based on this model, several heat transfer phenomena occurred in the air space between the layer of the insulating wall were investigated. From the simulation results, it was observed that the heat transfer through the air space between the layer were dominated by conduction and radiation and the low emissivity of the surface of each solid layer of the wall can dramatically increase the thermal resistance of the wall. For practical use, an equation was derived for the calculation of the thermal resistance of a multi-layered wall.

  • PDF

Removal of Phenol by Granular Activated Carbon from Aqueous Solution in Fixed-Bed Adsorption Column : Parameter Sensitivity Analysis (충진층 흡착관 내에서 입상활성탄에 의한 페놀 제거 : 매개변수 감응도 해석)

  • 윤영삼;황종연;권성헌;김인실;박판욱
    • Journal of Environmental Science International
    • /
    • v.7 no.6
    • /
    • pp.773-782
    • /
    • 1998
  • The adsorption experiment of phenol(Ph) from aqueous solution on granular activated carbon was studied in order to design the fixed-bed adsorption column. The experimental data were analyzed by unsteady-state, one-dimensional heterogeneous model. Finite element method(FEM) was applied to analyze the sensitivity of parameter and to predict the fixed-bed adsorption column performance on operation variable changes. The prediction model showed similar effect to mass transfer and intraparticle diffusion coefficient changes suggesting that both parameter present mass transfer rate limits for GAC-phenol system. The Freundlich constants had a greater effect than kinetic parameters for the performance of fixed-bed adsorption column. FEM solution facilitated prediction of concentration history in solution and within adsorbent particle.

  • PDF

Model of Encapsulated Ice 510 Storage Tanks Using Charge and Discharge Performance of Single Ice Capsule (단일캡슐 축방냉성능을 이용한 캡슐형 빙축열조 모델)

  • 이경호;주용진;최병윤;김상준
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.4
    • /
    • pp.337-344
    • /
    • 2000
  • The present study describes a one-dimensional modeling of encapsulated ice storage tanks. The thermal transmittance of capsules in this model uses the results from the Arnold's experimental $study^{(2-3)}$.In this model, ice storage tank is partitioned by several control volumes for the analysis, each having same number of capsules. The model is validated by the comparison of the measured data from an ice storage tank installed at a building with the capacity of 1200 ton-hrs and the simulated results with the same inlet brine temperature conditions into the tank.

  • PDF

Theoretical Analysis of a Spark Ignition Engine by the Thermodynamic Engine Model

  • Han, Sung Bin
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.55-60
    • /
    • 2015
  • Recent engine development has focused mainly on the improvement of engine efficiency and output emissions. The improvements in efficiency are being made by friction reduction, combustion improvement and thermodynamic cycle modification. Computer simulation has been developed to predict the performance of a spark ignition engine. The effects of various cylinder pressure, heat release, flame temperature, unburned gas temperature, flame properties, laminar burning velocity, turbulence burning velocity, etc. were simulated. The simulation and analysis show several meaningful results. The objective of the present study is to develop a combustion model for a spark ignition engine running with isooctane as a fuel and predicting its behavior.

A Prediction of DI Diesel engine Performance using the Multizone Model (Multizone 모델을 이용한 직접분사식 디젤엔진 성능 예측에 관한 연구)

  • ;Liu Shenghua
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.40-47
    • /
    • 2000
  • A model for the prediction of combustion and exhaust emissions of DI diesel engine has been formulated and developed. This model is a quasi-dimensional phenomenological one and is based on multi-zone combustion modelling concept. This model is developed based on the concept of Hiroyasu's multizone combustion models. It takes nozzle injection (spray) parameters, induction swirl into consideration and the models of zone velocity, air entrainment, fuel droplet evaporation and mixture combustion are upgraded. Various parameters, such as cylinder pressure, heat release rate, Nox and soot emission, and these parameters in the zone are simulated. The results are compared with the experimental ones, too.

  • PDF

Modeling Viscoelasticity of Acrylonitrile-butadiene Styrene Sheets using Long-short Term Memory Models (장단기 기억 신경망을 이용한 ABS 판재의 점탄성 모델링)

  • Nguyen Vu Doan;Ji Hoon Kim
    • Transactions of Materials Processing
    • /
    • v.33 no.5
    • /
    • pp.354-362
    • /
    • 2024
  • In this paper, the capabilities of recurrent neural networks (RNNs) to describe the viscoelastic properties of acrylonitrile-butadiene styrene (ABS) are investigated. The RNN model was trained using one-dimensional strains and corresponding stress data generated by the finite element method. The optimal model was then employed to predict the viscoelastic behavior of unseen test data. Furthermore, the viscoelastic-based RNN model was tested for extrapolation using other types of strain and corresponding stress data beyond the training set. The agreement between the predicted and actual stresses demonstrates the robust performance of the trained RNN model in predicting different types of strain inputs for larger strain tests, despite being trained only with step strain inputs. Therefore, the use of RNNs can be considered a viable alternative to conventional models for predicting viscoelastic behavior.

Adaptive Regression by Mixing for Fixed Design

  • Oh, Jong-Chul;Lu, Yun;Yang, Yuhong
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.3
    • /
    • pp.713-727
    • /
    • 2005
  • Among different regression approaches, nonparametric procedures perform well under different conditions. In practice it is very hard to identify which is the best procedure for the data at hand, thus model combination is of practical importance. In this paper, we focus on one dimensional regression with fixed design. Polynomial regression, local regression, and smoothing spline are considered. The data are split into two parts, one part is used for estimation and the other part is used for prediction. Prediction performances are used to assign weights to different regression procedures. Simulation results show that the combined estimator performs better or similarly compared with the estimator chosen by cross validation. The combined estimator generates a similar risk to the best candidate procedure for the data.

Optimal Angle Error Reduction of Magnetic Position Sensor by 3D Finite Element Method

  • Kim, Ki-Chan
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.454-459
    • /
    • 2013
  • This paper deals with an optimal angle error reduction method of magnetic position sensor using hall effect elements. The angle detection simulation for the magnetic position sensor is performed by 3 dimensional finite element method and Taguchi method, one of the design of experiments. The magnetic position sensor is required to generate ideal sine and cosine waveforms from its hall effect elements according to rotation angle for precise angle information. However, the output signals are easy to include harmonics due to uneven magnetic field distribution from permanent magnet in the air-gap in the vicinity of hall effect elements. For the Taguchi method, three design parameters related to position of hall effect elements and shape of back yoke are selected. The characteristics of optimal magnetic position sensor are compared with those of original one in terms of simulation as well as experiment. Finally, the performances of the motor adopting original model and optimal model are represented for the purpose of verification of motor performance due to signals from magnetic position sensor.