• Title/Summary/Keyword: One-cycle control (OCC)

Search Result 4, Processing Time 0.021 seconds

Implementation of One-Cycle Control for Switched Capacitor Converters

  • Yang, Lei;Zhang, Xiaobin;Li, Guann-pyng
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2057-2066
    • /
    • 2016
  • An extension of the one-cycle control (OCC) method for switched-capacitor (SC) converters is proposed in this paper, featuring a fast dynamic response, wide line and load operation ranges, and simplicity in implementation. To illustrate the operation principle of this nonlinear control method and to demonstrate its simplicity in design, a dual-phase unity gain SC converter is examined. A new control loop based on the charge balance in a flying capacitor is formulated for the OCC technique and implemented with a 15W dual-phase unity gain SC converter on a circuit board for control verification. The obtained experimental results show that external disturbances can be rejected in one switching cycle by the OCC controlled SC converter with good line and load regulations. When compared to other control methods, the proposed nonlinear control loop exhibits superior dynamic performance in suppressing input and load disturbances.

A Study on OCC type PFC Converter for PSU of LCD TV (LCD TV의 전원장치를 위한 OCC 방식 PFC Converter에 관한 연구)

  • Kim, Min-Young;Yoon, Seong-Sik;Kim, Tae-Kue;Ahn, Ho-Kyun;Yoon, Tae-Sung;Kim, Sung-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1126-1127
    • /
    • 2007
  • This paper presents One Cycle Control type PFC converter for power system Unit of LCD TV. A control technique known as One Cycle Control contends reductions in complexity, cost, design time, and PCB real estate, without a sacrifice in performance. In this paper, design and experiment on 300W One Cycle Control type PFC Converter for Power System Unit of LCD TV.

  • PDF

An Improved One Cycle Control for Active Power Filters under Non-Ideal Voltage Conditions

  • Wang, Lei;Ren, Chunguang;Yang, Yu;Han, Xiaoqing;Wang, Peng
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2350-2358
    • /
    • 2016
  • The one cycle control (OCC) scheme for active power filters (APFs) has shown excellent harmonic suppression and implementation simplicity. However, its real world application is limited because the non-ideal supply voltage for APFs can influence its performance so that the source currents are still distorted after compensation. This paper proposes a modified one cycle control (MOCC) scheme to improve the performance of three-phase shunt APFs under non-ideal supply voltage conditions. In this paper a detailed mathematical derivation has been presented and the key control law of the MOCC has been developed for adaption to the non-ideal supply voltages, following the control philosophy of simplicity. A relatively simple sequence filter is introduced to extract the harmonic components of supply voltages. The modified scheme can be easily implemented. The proposed control strategy has excellent performance and a 5kVA APF hardware platform has been implemented to validate the feasibility and performance of the proposed strategy.

One-Cycle Control Strategy for Dual-Converter Three-Phase PWM Rectifier under Unbalanced Grid Voltage Conditions

  • Xu, You;Zhang, Qingjie;Deng, Kai
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.268-277
    • /
    • 2015
  • In this paper, a dual-converter three-phase pulse width modulation (PWM) rectifier based on unbalanced one-cycle control (OCC) strategy is proposed. The proposed rectifier is used to eliminate the second harmonic waves of DC voltage and distortion of line currents under unbalanced input grid voltage conditions. The dual-converter PWM rectifier employs two converters, which are called positive-sequence converter and negative-sequence converter. The unbalanced OCC system compensates feedback currents of positive-sequence converter via grid negative-sequence voltages, as well as compensates feedback currents of negative-sequence converter via grid positive-sequence voltages. The AC currents of positive- and negative-sequence converter are controlled to be symmetrical. Thus, the workload of every switching device of converter is balanced. Only one conventional PI controller is adopted to achieve invariant power control. Then, the parameter tuning is simplified, and the extraction for positive- and negative-sequence currents is not needed anymore. The effectiveness and the viability of the control strategy are demonstrated through detailed experimental verification.