• Title/Summary/Keyword: One-cutting method

Search Result 342, Processing Time 0.029 seconds

A Study on Aesthetic Characteristics of Drapery Costume (드레이퍼리 의상의 미적 특성)

  • Ahn, Sun-Hee;Lee, Myoung-Hee
    • The Research Journal of the Costume Culture
    • /
    • v.17 no.3
    • /
    • pp.396-406
    • /
    • 2009
  • Drapery costume started with using one fabric to loosely wrap around one's body without using technical skills or needlework. Drapery becomes a beautiful and indeterminate form of pleated costume which determines the costume silhouette and serves as an essential component for the composition of artistic costume. The purpose of this study was to examine the aesthetic characteristics of drapery costume using literature review. The study methods include considerations of the formation process of drapery costume with the analysis of costume in pictures. For modern costume designs, the study analyzed the designer's dress with a focus on drapery forms, which appeared in the collections from 2001 to 2007. First, drapery costume contains the beauty of human body. Drapery costume reveals the smallest movement of the body. The beauty of drapes, which is naturally revealed along the curve of the body, and the pleats which form on the soft cloth create the beauty of body. Second, drapery costume has rhythmical beauty. Drapery pleats feature not only functions, but also unique formativeness that provides rhythmicity and regular or irregular direction effects by line. Third, drapery costume features elegant beauty. Bias cutting by draping can effectively express the elegant characteristics of the fabric. In making a piece of clothing, the composition method can express elegant beauty by covering up the shortcomings of the fitting and by fitting to the body line without cutting the fabric, or fitting it by bias cutting.

  • PDF

The Geometric Machining Mechanism of Ultrasonic Drilling (초음파 드릴링의 기하학적 가공 메커니즘 분석)

  • Jang Sung-Hoon;Lee Seok-Woo;Choi Hon-Zong;Lee Sun-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.76-83
    • /
    • 2005
  • With the acceleration of the miniaturization of products, especially in recent years, machining technologies for these products is in need of improvement. Conventional technologies have limitations in realizing the miniaturization due to the downsizing effects of the tools, which lack sufficient cutting stiffness during machining. The application of ultrasonic vibration is one of the most useful solutions in dealing with the problem. This study focused on the difference of ultrasonic drilling from conventional one in geometrical machining mechanism and the corresponding machining results. In detailed, some mathematical equations for drill cutting edge paths during drilling were extracted and new method to find uncut chip thickness from above equations was suggested. The experiments were carried out through the comparison between the results (disposed chips and internal surface states of holes) of conventional drilling and those of ultrasonic drilling. It was determined that the geometrical paths of cutting edges and analyzed uncut chip thickness agree with the appearance of disposed chips. Furthermore, the change in tool path by ultrasonic vibration resulted in the improvement of surface statement.

Machinability Evaluation of the Plastic Mould Steel using AlTiN Coated Tool (AlTiN코팅공구를 사용한 플라스틱금형강의 기계가공성 평가)

  • Lee, Seung-Chul;Cho, Gyu-Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.629-635
    • /
    • 2009
  • In this research, KP-4, one of the plastic mold steels, was coated with the AlTiN from one layer to four layers by the PVD method in the $\Phi$ 8mm cemented carbide ball end mill. Coated KP-4 was processed with various conditions. For example, slope of $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$ the spindle rotation speed was changed from 10,000rpm to 16,000rpm, the tool feeding speed was changed from 1,300mm/min to 1,700mm/min, the depth of cut was also changed from 0.3mm to 0.9mm, and etc. Cutting component force according to the coating layer number, and surface roughness were studied. The cutting component force showed a good agreement better the up ward direction than the down ward direction under all experimental conditions. In case of the condition per the material shape, it was lessen when the tool have larger angle because the average effective diameter of the tool is larger. The surface roughness showed good condition in case of the up ward than the down ward direction. And, in the 3rd layer of AlTiN coating, it showed the most suitable condition.

  • PDF

A Study on the Wear Characteristics of the Ball End Mill According to the AlTiN Coated Layers (AlTiN 코팅 층수에 따른 볼 엔드밀의 마모특성에 관한 연구)

  • Cho, Gyu-Jae;Lee, Seung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.54-61
    • /
    • 2010
  • In this research KP-4, one of the plastic mold steels, was coated with the AlTiN from one layer to four layers by the PVD method in the $\Phi$ cemented carbide ball end mill. Coated KP-4 was processed with various conditions. For example, slope of $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$ the spindle rotation speed was changed from 10,000rpm to 16,000rpm, the tool feeding speed was changed from 1,300mm/min to 1,700mm/min, the depth of cut was also changed from 0.3mm to 0.9mm, and etc. Cutting component force according to the coating layer number, surface roughness, and the wear of tool were studied.

A Study on the Design of Ultrasonic Vibration Cutting Tool Horn (초음파 진동 절삭공구 혼(tool horn)의 설계에 관한 연구)

  • Gang, Jong-Pyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.3
    • /
    • pp.55-63
    • /
    • 1991
  • Transforming small ultrasonic energy into large mechanical energy is the essential feature of ultrasonic vibration in various application fields. This energy amplification can be obtained by achieving resonance condition between booster or tool horn and transducer. When it has uniform section with small sectional area, one dimensional analysis provides good estimation of the natural frequency of the horn. But, for arbitrary shape of horn, one dimensional analysis can no longer be applied. At present, designing tool horn whose natural frequency is identical to that of transducer requires serveral stages of trial and error in actual manufacturing process. In this paper, frequency analysis program is developed to easily predict the natural frequency of ultrasonic vibration cutting tool with axisymmetry and 3- dimensional shape using finite element method.

  • PDF

A Study on the Machinability Evaluation According to Lubrication Conditions and Taper Angle for Turning of SCM440 (SCM440 의 선삭에서 윤활조건과 테이퍼 각에 따른 가공성 평가에 관한 연구)

  • Choi, Min-Seok;Kim, Dong-Hyeon;Hwang, Seong-Ju;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.35-42
    • /
    • 2014
  • Recently, in industry field, many researchers are looking for ways to reduce the use of lubricant because of environmental and economical reasons. MQL lubrication is one of many lubrication technologies. The aim of this study is to evaluate the machinability considering lubrication methods and taper angles of workpieces for turning of SCM440. Workpieces of two shapes such as workpiece with and without taper angle are used. And two lubrication methods such as MQL and Wet have been considered. And cutting force and surface roughness are used as characteristic values. Cutting speed, feed rate, injection angle and distance are used as design parameters. The characteristic values were statistically analyzed by Taguchi method. From the results, main effects plot and importance of each parameter according to conditions are analyzed. Finally, this study has been suggested the optimum machining conditions according to the lubrication methods, machining conditions and shape of workpiece.

Drilling Characteristics and Modeling of Diamond Core Drilling Processes (다이아몬드 코어드릴 공정의 구멍가공 특성과 모델링)

  • Yoon, Kwan-Woo;Chung, Sung-Chong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.95-103
    • /
    • 2008
  • Diamond core drills are applied to drill difficult-to-cut materials. This paper proposes basic understanding of ceramic drilling mechanics and characteristics of main factors affecting tool life, tool wear, cutting force, and chipping thickness. In contrast to conventional drilling, the core drilling process make deep grooves on the workpiece. One difficulty of it is the evacuation of chips from the drilled groove. As the drilling depth increases, an increased amount of chips tend to cluster together and clog the groove. Eventually severe wear develops and diamond grits are separated from the drill body. To relieve the clogging problem and to evacuate chips from the groove easily, the helical drilling process is applied for the core drilling process. To analyze drilling characteristics and derive optimal drilling conditions, tool life, tool wear, cutting force, and chipping thickness are quantified through the monitoring system and the Taguchi method. Mathematical models for the tool life and chipping thickness are derived from the response surface method. Optimal drilling database has been constructed through the experimental models.

Cutting force regulation of microdrilling using the sliding mode control (슬라이딩 모드 제어를 이용한 마으크로 드릴의 절삭력 제어)

  • 정만실;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.842-846
    • /
    • 1997
  • Micro-hole drilling (holes less than 0.5 mm in diameter with aspect ratios larger than 10) is gaining increased attention in a wide spectrum of precision production industries. Alternative methods such as EDM, laser drilling, etc. can sometimes replace mechanical micro-hole drilling but are not acceptable in PCB manufacture because they yield inferior hole quality and accuracy. The major difficulties in micro-hold drilling are related to wandering motions during the inlet stage, high aspect ratios, high temperature,etc. However, of all the difficulties, the most undesirable one is the increase of drilling force as the drill penetrates deeper into hold. This is caused mainly by chip related effects. Peck-drilling is thus widely used for deep hole drilling despite the fact that it leads to low productivity. Therefore, in this paper, a method of cutting force regulation is proposed to achieve continuous drilling. A proportional plus derivative (PD) and a sliding modecontrol algorithm will be implemented for controlling the spinle rotational frequeency. Experimental results will show that sliding mode control reduces the nominal cutting force and its variation better than the PD control, resulting in a number of advantages such as an increase in drill life, fast stabilization of the wandering motion, and precise positioning of the hole.

  • PDF

A study on the machinability of SUS304

  • Lim, K.Y.;Yu, K.H.;Seo, N.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.1
    • /
    • pp.34-41
    • /
    • 1993
  • SUS304 is wellknown as difficult-to-machine materials. It is easy to appear workhardened, and workhardening is one of the causes of groove wear on the tool. In this paper, the author would like to compare the width of flank wear with that of groove wear, and to find whether the groove wear can be used as a criterion of a tool life. The design of the twelve tests provides three levels for each variable (speed: 200m/min, 118m/min, 70m/min; feed: 0.3mm/rev, 0.17mm/rev, 0.1mm/rev; depth of cut: 0.4mm, 0.28mm, 0.2mm). The study of tool-life testing by statistical technique follows usual most scientific sequence. So the tool-life predicting equation is calculated by the method of least squares. The overall adequacy of the model can be verified by the analysis of variance. The results obtained are as follows : 1) When SUS304 is cut in 200(m/min), the width of flank wear is much larger than that of groove wear. 2) In cutting speed 118m/min, flank wear is a little larger than groove wear and in the cutting speed 70m/min, the latter is a little larger so that it is reasonable to determine the tool life according the crierion by groove wear in the low cutting speed (less than 70m/min). 3) Owing to the burr the depth of engagement along the cutting edge is extended toward the shank.

  • PDF

Study on the Machinability of Pinus densiflora at Chunyang District for Wood Patterns - Effect of Chip-Tool Contact Stress Distribution in Workpiece During of Wood Machining - (목형용(木型用) 춘양목(春陽木)의 절삭가공(切削加工) 특성(特性)에 관(關)한 연구(硏究)(제1보(第1報)) - 절삭중(切削中) 공구면(工具面)의 응력분포에 미치는 접촉(接觸)칩의 영향(影響) -)

  • Kim, Jeong-Du
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.54-60
    • /
    • 1988
  • Machinabilities means inherent properties of pinus densiflora at Chunyang district to be CNC machined easily or not, and processing abilities of the tool and machine together. This explanation signifies that machinabilities have two phases of signification, depended on considering and stress either materials or tools preferentially. This paper discuss machinabilities, the following items are usually employed as the indices of stress distribution at the cutting tool rake face. The stress distributions on the chip - tool contact surface at the early stage of the chip forming and under the stage of fringe pattern in wood cutting were analyzed the photoelastic method. The tool used in the present experiment was the special cutting tool H.S.S. one made in laboratory. And isochromatic fringe pattern and isolinic line of work piece by chip-behavior during the cutting operation were photographed with the feed camera continuously. The effects on the stress, distribution on the rake face of the epoxy tool and the strain distribution in the work piece of wood plate by chip behavior are cleared in pre cent experiment.

  • PDF