• Title/Summary/Keyword: One-Way Encryption

Search Result 49, Processing Time 0.024 seconds

Asymmetric Temporal Privilege Management on Untrusted Storage Server (네트워크 스토리지에서 비대칭키 방식의 시 분할 권한 권리 (ATPM))

  • Kim, Euh-Mi;Yoon, Hyo-Jin;Cheon, Jung-Hee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.3
    • /
    • pp.31-42
    • /
    • 2005
  • We consider a network storage model whose administrator can not be fully trusted. In this model, we assume that all data stored are encrypted for data confidentiality and one owner distributes the decryption key for each time period to users. In this paper, we propose three privilege management schemes. In the first scheme, called Temporal Privilege Management (TPM), we use a symmetric encryption based on one-way function chains for key encapsulation. In the second scheme, called Asymmetric Temporal Privilege Management (ATPM), anyone can encrypt the data using the public key of owner, but only privileged users can decrypt the encrypted data. Finally, we present a scheme to restrict writers' privilege using ID-based signatures in ATPM. In our schemes, the privilege managements are based on the time and the addition of users is efficient. Specially, applying TPM and ATPM, we can solve the back-issue problem.

Improving the Efficiency and Scalability of Standard Methods for Data Cryptography

  • Abu-Faraj, Mua'ad M.;Alqadi, Ziad A.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12spc
    • /
    • pp.451-458
    • /
    • 2021
  • Providing a secure and effective way to protect confidential and private data is an urgent process, and accordingly, we will present in this research paper a new method, which is called multiple rounds variable block method (MRVB) which depends on the use of a colored image that is kept secret to generate needed work and round keys. This method can be used to encrypt-decrypt data using various lengths private key and data blocks with various sizes. The number of rounds also will be variable starting from one round. MRVB will be implemented and compared with the encryption-decryption standards DES and AES to show the improvements provided by the proposed method in increasing the security level and in increasing the throughput of the process of data cryptography. The generated private key contents will depend on the used image_key and on the selected number of rounds and the selected number of bytes in each block of data.

Proposal for Optical One-time Password Authentication Using Digital Holography

  • Jeon, Seok Hee;Gil, Sang Keun
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.722-732
    • /
    • 2016
  • A new optical one-time password (OTP) authentication method using digital holography is proposed, which enhances security strength in the authentication system. A challenge-response optical OTP algorithm based on two-factor authentication is presented using two-step phase-shifting digital holography, and two-way authentication is also performed using challenge-response handshake in both directions. Identification (ID), password (PW), and OTP are encrypted with a shared key by applying phase-shifting digital holography, and these encrypted pieces of information are verified by each party by means of the shared key. The encrypted digital holograms are obtained by Fourier-transform holography and are recorded on a CCD with 256 quantized gray-level intensities. Because the intensity pattern of such an encrypted digital hologram is distributed randomly, it guards against a replay attack and results in higher security level. The proposed method has advantages, in that it does not require a time-synchronized OTP, and can be applied to various authentication applications. Computer experiments show that the proposed method is feasible for high-security OTP authentication.

A Study on Cooperation between Kerberos system and Credit-Control Server

  • Choi, Bae-Young;Lim, Hyung-Jin;Chung, Tai-Myoung
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.281-284
    • /
    • 2005
  • Kerberos is system that offer authorization in internet and authentication service. Can speak that put each server between client and user in distributed environment and is security system of symmetry height encryption base that offer authentication base mutually. Kerberos authentication is based entirely on the knowledge of passwords that are stored on the Kerberos Server. A user proves her identity to the Kerberos Server by demonstrating Knowledge of the key. The fact that the Kerberos Server has access to the user's decrypted password is a rwsult of the fact that Kerberos does not use public key cryptogrphy. It is a serious disadvantage of the Kerbercs System. The Server must be physically secure to prevent an attacker from stealing the Kerberos Server and learning all of the user passwords. Kerberos was designend so that the server can be stateless. The Kerberos Server simply answers requests from users and issues tickets. This study focused on designing a SIP procy for interworking with AAA server with respect to user authentication and Kerberos System. Kerberos is security system of encryption base that offer certification function mutually between client application element and server application element in distributed network environment. Kerberos provides service necessary to control whether is going to approve also so that certain client may access to certain server. This paper does Credit-Control Server's function in AAA system of Diameter base so that can include Accounting information that is connected to Rating inside certification information message in Rating process with Kerberos system.

  • PDF

Implementation of RBAC Certification & DB Security Based on PMI for NEIS (NEIS를 위한 PMI 기반의 RBAC 인증과 DB 보안 구현)

  • Ryoo Du-Gyu;Moon Bong-Keun;Jun Moon-Seog
    • The KIPS Transactions:PartC
    • /
    • v.11C no.7 s.96
    • /
    • pp.981-992
    • /
    • 2004
  • The established NEIS has a lot of problems in the management of security. It does not realize access control in following authority because it only uses PKI certification in user certification and the use of central concentration DBMS and plain text are increased hacking possibility in NEIS. So, This paper suggests a new NEIS for the secure management of data and authority certification. First, we suggest the approached authority in AC pf PMI and user certification in following the role, RBAC. Second, we realize DB encryption plan by digital signature for the purpose of preventig DB hacking. Third, we suggest SQL counterfeit prevention by one-way hash function and safe data transmission per-formed DB encryption by digital signature.

A Secure Data Processing Using ID-Based Key Cryptography in Mobile Cloud Computing (모바일 클라우드 컴퓨팅 환경에서 ID-기반 키 암호화를 이용한 안전한 데이터 처리 기술)

  • Cheon, EunHong;Lee, YonSik
    • Convergence Security Journal
    • /
    • v.15 no.5
    • /
    • pp.3-8
    • /
    • 2015
  • Most mobile cloud computing system use public key cryptography to provide data security and mutual authentication. A variant of traditional public key technologies called Identity-Based Cryptography(IBC) has recently received considerable attention. The certificate-free approach of IBC may well match the dynamic qualities of cloud environment. But, there is a need for a lightweight secure framework that provides security with minimum processing overhead on mobile devices. In this paper, we propose to use hierarchical ID-Based Encryption in mobile cloud computing. It is suitable for a mobile network since it can reduce the workload of root Public Key Generators by delegating the privilege of user authentication and private key generation. The Identity-Based Encryption and Identity-Based Signature are also proposed and an ID-Based Authentication scheme is presented to secure data processing. The proposed scheme is designed by one-way hash functions and XOR operations, thus has low computation costs for mobile users.

Privacy Preserving and Relay Attack Preventing Multi-Context RFID Mutual Authentication Protocol (프라이버시를 제공하고 중계 공격에 안전한 다중-컨텍스트 RFID 상호 인증 프로토콜)

  • Ahn, Hae-Soon;Yoon, Eun-Jun;Nam, In-Gil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.8B
    • /
    • pp.1028-1037
    • /
    • 2011
  • Recently, Selim et al proposed public key cryptography based privacy preserving multi-context RFID authentication protocol. However Selim et al's proposed protocol not only doesn't fit into passive tag based RFID system because it uses public key based encryption algorithm to perform authentication between reader and tag, but also is insecure to an impersonation attack because it doesn't provide mutual authentication. In order to eliminate the above described efficiency problem and security vulnerabilities, this paper proposes a new multi-context RFID mutual authentication protocol that can prevent privacy invasion and tag impersonation attack through providing mutual authentication between single passive tag which is located different application space and readers which provide multi-context purposes and can secure against relay attack and denial-of-service attack. As a result, the proposed protocol performs secure mutual authentication based on the collected space and time information from the RFID reader and provides strong security and high computation efficiency because if performs secure one-way hash function and symmetric encryption operations suitable to the environments of passive RFID tags.

Optimization of Approximate Modular Multiplier for R-LWE Cryptosystem (R-LWE 암호화를 위한 근사 모듈식 다항식 곱셈기 최적화)

  • Jae-Woo, Lee;Youngmin, Kim
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.736-741
    • /
    • 2022
  • Lattice-based cryptography is the most practical post-quantum cryptography because it enjoys strong worst-case security, relatively efficient implementation, and simplicity. Ring learning with errors (R-LWE) is a public key encryption (PKE) method of lattice-based encryption (LBC), and the most important operation of R-LWE is the modular polynomial multiplication of rings. This paper proposes a method for optimizing modular multipliers based on approximate computing (AC) technology, targeting the medium-security parameter set of the R-LWE cryptosystem. First, as a simple way to implement complex logic, LUT is used to omit some of the approximate multiplication operations, and the 2's complement method is used to calculate the number of bits whose value is 1 when converting the value of the input data to binary. We propose a total of two methods to reduce the number of required adders by minimizing them. The proposed LUT-based modular multiplier reduced both speed and area by 9% compared to the existing R-LWE modular multiplier, and the modular multiplier using the 2's complement method reduced the area by 40% and improved the speed by 2%. appear. Finally, the area of the optimized modular multiplier with both of these methods applied was reduced by up to 43% compared to the previous one, and the speed was reduced by up to 10%.

A Fast and Secure Scheme for Data Outsourcing in the Cloud

  • Liu, Yanjun;Wu, Hsiao-Ling;Chang, Chin-Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2708-2721
    • /
    • 2014
  • Data outsourcing in the cloud (DOC) is a promising solution for data management at the present time, but it could result in the disclosure of outsourced data to unauthorized users. Therefore, protecting the confidentiality of such data has become a very challenging issue. The conventional way to achieve data confidentiality is to encrypt the data via asymmetric or symmetric encryptions before outsourcing. However, this is computationally inefficient because encryption/decryption operations are time-consuming. In recent years, a few DOC schemes based on secret sharing have emerged due to their low computational complexity. However, Dautrich and Ravishankar pointed out that most of them are insecure against certain kinds of collusion attacks. In this paper, we proposed a novel DOC scheme based on Shamir's secret sharing to overcome the security issues of these schemes. Our scheme can allow an authorized data user to recover all data files in a specified subset at once rather than one file at a time as required by other schemes that are based on secret sharing. Our thorough analyses showed that our proposed scheme is secure and that its performance is satisfactory.

Related-Key Differential Attacks on CHESS-64

  • Luo, Wei;Guo, Jiansheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3266-3285
    • /
    • 2014
  • With limited computing and storage resources, many network applications of encryption algorithms require low power devices and fast computing components. CHESS-64 is designed by employing simple key scheduling and Data-Dependent operations (DDO) as main cryptographic components. Hardware performance for Field Programmable Gate Arrays (FPGA) and for Application Specific Integrated Circuits (ASIC) proves that CHESS-64 is a very flexible and powerful new cipher. In this paper, the security of CHESS-64 block cipher under related-key differential cryptanalysis is studied. Based on the differential properties of DDOs, we construct two types of related-key differential characteristics with one-bit difference in the master key. To recover 74 bits key, two key recovery algorithms are proposed based on the two types of related-key differential characteristics, and the corresponding data complexity is about $2^{42.9}$ chosen-plaintexts, computing complexity is about $2^{42.9}$ CHESS-64 encryptions, storage complexity is about $2^{26.6}$ bits of storage resources. To break the cipher, an exhaustive attack is implemented to recover the rest 54 bits key. These works demonstrate an effective and general way to attack DDO-based ciphers.