• Title/Summary/Keyword: One-Stage Turbine

Search Result 78, Processing Time 0.026 seconds

Simulation model for Francis and Reversible Pump Turbines

  • Nielsen, Torbjorn K.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.3
    • /
    • pp.169-182
    • /
    • 2015
  • When simulating the dynamic behaviour of a hydro power plant, it is essential to have a good representation of the turbine behaviour. The pressure transients in the system occurs because the flow changes, which the turbine defines. The flow through the turbine is a function of the pressure, the speed of rotation and the wicket gate opening and is, most often described in a performance diagram or Hill diagram. In the Hill diagram, the efficiency is drawn like contour lines, hence the name. A turbines Hill diagram is obtained by performance tests on scaled model in a laboratory. However, system dynamic simulations have to be performed in the early stage of a project, before the turbine manufacturer has been chosen and the Hill diagram is known. Therefore one have to rely on diagrams for a turbine with similar speed number. The Hill diagram is drawn through measured points, so for using the diagram in a simulation program, one have to iterate in the diagram based on curve fitting of the measured points. This paper describes an alternative method. By means of the Euler turbine equation, it is possible to set up two differential equations which represents the turbine performance with good enough accuracy for the dynamic simulations. The only input is the turbine's main geometry, the runner blade in- and outlet angle and the guide vane angle at best efficiency point of operation (BEP). In the paper, simulated turbine characteristics for a high head Francis turbine, and for a reversible pump turbine are compared with laboratory measured characteristics.

An Experimental Study of the Performance Characteristics on a Multi-Stage Micro Turbine with Various Stages (다단 마이크로터빈에서 단수 변화에 따른 터빈의 성능에 관한 실험적연구)

  • Cho, Chong-Hyun;Cho, Soo-Yong;Choi, Sang-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.76-82
    • /
    • 2005
  • An experimental study on an axial-type micro turbine which consists of maximum 6 stages is conducted to measure aerodynamic characteristics on each stage. This turbine has a 2.0 flow coefficient, 3.25 loading coefficient and 25.8mm mean diameter. The solidity of stators and rotors is within a 0.67~0.75, and the off-design performance is measured by changing the load after adjusting the mass flowrate and the total pressure to constant at inlet. A maximum specific output power of 2kW/kg/sec is obtained in one stage, but the increment of the specific output power with increasing stages is alleviated. In case of torque, the increment of the torque maintains to constant at low RPM region, but its increment become dull at high RPM region. The efficiency of the micro turbine becomes low because the tip gap effect is great due to the small blade, but it could be improved by increasing the stages.

Damage Analysis for Last-Stage Blade of Low-Pressure Turbine (저압터빈 최종단 블레이드 손상해석)

  • Song, Gee Wook;Choi, Woo Sung;Kim, Wanjae;Jung, Nam Gun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.12
    • /
    • pp.1153-1157
    • /
    • 2013
  • A steam turbine blade is one of the core parts in a power plant. It transforms steam energy into mechanical energy. It is installed on the rim of a rotor disk. Many failure cases have been reported at the final stage blades of a low-pressure (LP) turbine that is cyclically loaded by centrifugal force because of the repeated startups of the turbine. Therefore, to ensure the safety of an LP steam turbine blade, it is necessary to investigate the fatigue strength and life. In this study, the low cycle fatigue life of an LP steam turbine blade is evaluated based on actual damage analysis. To determine the crack initiation life of the final stage of a steam turbine, Neuber's rule is applied to elastic stresses by the finite element method to calculate the true strain amplitude. It is observed that the expected life and actual number of starts/stops of the blade were well matched.

Flow Characteristics in a Multistage Axial Turbine (다단 축류형 터빈의 유동 특성 해석)

  • Um InSik;Park Jun Young;Baek Je Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.149-154
    • /
    • 2000
  • The flows through a turbomachinery tend to be extremely complex due to its inherent unsteady and viscous phenomena. A good analysis of the flows associated with rotor/stator interactions in turbomachinery will be great help in design stage. In this investigation, unsteady viscous flow structurts through one and half stage of UTRC large scale rotating axial turbine are analysed. The numerical data was compared with experimental data and showed good agreement.

  • PDF

Design Strategies for Multi-Stage Axial Turbines (다단 축류터빈 공력설계 및 공력성능 향상기법)

  • Kang, Young-Seok;Rhee, DongHo;Cha, BongJun;Yang, SooSeok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.5
    • /
    • pp.78-82
    • /
    • 2014
  • This paper describes a brief aerodynamic design procedure of multi-stage axial turbine. The design procedure was established including one dimensional scratch design, through flow analysis with empirical correlations, two dimensional airfoil design and three dimensional airfoil stacking. Detailed aerodynamic performance assessment was done with full three dimensional CFD method at the design and off design conditions to construct turbine performance map. With the present method, aerodynamic design procedure of 1st and 2nd stages of high pressure turbine for 10,000lbf class turbofan engine was introduced.

A Study on the Probabilistic Reliability Evaluation of Power System Considering Wind Turbine Generators with A simplified Multi-state Model (간략화한 다개상태 모델을 갖는 풍력발전계통을 고려한 전력계통의 신뢰도평가에 관한 기초연구)

  • Wu, Liang;Park, Jeong-Je;Choi, Jae-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.271-272
    • /
    • 2008
  • Renewable energy resources such as wind, wave, solar, micro hydro, tidal and biomass etc are becoming important stage by stage, considering the effect of environment. Wind energy is one of the most successful sources of renewable energy for the production of electrical energy. What's more, due to wind speed random variation the wind turbine generators can not make two-state model as conventional generators. The method of obtaining reliability evaluation indices of wind turbine generators is different from the conventional generators. This paper presents a study on the reliability evaluation of power system considering wind turbine generators with a simplified multi-state model.

  • PDF

A Numerical Analysis on Two-Dimensional Viscous Flowfield around a Steam Turbine Cascade (2차원 증기터어빈 익렬유동의 수치적 해석)

  • Kim Y. I.;Kim K. S.;Kim K. C.;Ha M. Y.;Park H. D.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.64-69
    • /
    • 1995
  • A computer code for solving the Reynolds averaged full Navier-Stokes equations has bent developed for analysis of gas and steam turbine cascade flows with the option of using one of two types of turbulence model. One is the Baldwin-Lomax model and the other is standard $k-{\varepsilon}$ model. The numerical integration is based on the explicit four stage Runge-Kutta scheme and finite volume method. To be verified, the resulting code is applied to VKI turbine cascade and compared with the previous experimental results. Finally, the flowfield around a steam turbine cascade is analyzed. Comparisons with experimental data show that present numerical scheme is an accurate Navier-Stokes solver and can give very good predictions for both gas and steam turbine cascade flow.

  • PDF

A Study on Probabilistic Reliability Evaluation of Power System Considering Wind Turbine Generators (풍력발전기를 고려한 전력계통의 확률론적인 신뢰도 평가에 관한 연구)

  • Park, Jeong-Je;Wu, Liang;Choi, Jae-Seok;Moon, Seung-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1491-1499
    • /
    • 2008
  • This paper presents a study on reliability evaluation of a power system considering wind turbine generators (WTG) with multi-state. Renewable energy resources such as wind, wave, solar, micro hydro, tidal and biomass etc. are becoming importance stage by stage because of considering effect of the environment. Wind energy is one of the most successful sources of renewable energy for the production of electrical energy. But, reliability evaluation of generating system with wind energy resources is a complex process. While the wind turbine generators can not modelled as two-state model as like as conventional generators, they should be modelled as multi-state model due to wind speed random variation. The methodology for obtaining reliability evaluation index of wind turbine generators is different from it of the conventional generators. A method for making outage capacity probability table of WTG for reliability is proposed in this paper. The detail process is presented using case study of simple system.

A Study on the Aerodynamic Design of Three-Dimensional Axial Type Turbine Blade (3차원 축류형 터빈익형의 공력설계에 관한 연구)

  • Jang, B.I.;Kim, D.S.;Cho, S.Y.
    • Journal of Power System Engineering
    • /
    • v.5 no.3
    • /
    • pp.38-47
    • /
    • 2001
  • One stage axial type turbine is designed by mean-line analysis, streamline curvature method and blade design method using shape parameters. Tip and hub diameter of the turbine are 300mm and 206.4mm, respectively. The rotating speed is 1800RPM, and the output power is 1.4kW. The flow coefficient is 1.68 and the reaction factor at mean-line is 0.373. The number of stator and rotor of the turbine are 31 and 41, respectively. Mach number of stator exit flow near hub is 0.164. A test rig is developed for performance test to validate a developed design method. The experimental result shows that the maximum efficiency is obtained on the design point.

  • PDF

A NUMERICAL INVESTIGATION ON THE INTERNAL FLOW CHARACTERISTICS IN TURBINE NOZZLE BY VARIATION OF ITS FLOW AREA (목 면적 변화에 따른 터빈노즐 내부 유동 특성에 관한 수치적 조사)

  • Kim, Y.C.;Kang, W.T.;Shin, B.R.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.584-585
    • /
    • 2010
  • A numerical simulation was performed to investigate the internal flow characteristics in gas turbine nozzle by the variation of flow area of the nozzle. In general the area of turbine nozzle is chosen by the most substantial factor on performance improvement of turbine at the first stage. In the performances test through CFD analysis for three types of nozzle with conventional, enlarged and reduced area, reduced one with effective flow area (EFA) was the most efficient. That is the minimum effective value within EFA limit defined by the manual of technical order had a good performance. It is useful to avoid the low power problem in the test of performance after maintenance and overhaul of turbine engine.

  • PDF