• Title/Summary/Keyword: One dimensional array

Search Result 152, Processing Time 0.025 seconds

Design of an Efficient VLSI Architecture of SADCT Based on Systolic Array (시스톨릭 어레이에 기반한 SADCT의 효율적 VLSl 구조설계)

  • Gang, Tae-Jun;Jeong, Ui-Yun;Gwon, Sun-Gyu;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.3
    • /
    • pp.282-291
    • /
    • 2001
  • In this paper, an efficient VLSI architecture of Shape Adaptive Discrete Cosine Transform(SADCT) based on systolic array is proposed. Since transform size in SADCT is varied according to the shape of object in each block, it are dropped that both usability of processing elements(PE´s) and throughput rate in time-recursive SADCT structure. To overcome these disadvantages, it is proposed that the architecture based on a systolic way structure which doesn´t need memory. In the proposed architecture, throughput rate is improved by consecutive processing of one-dimensional SADCT without memory and PE´s in the first column are connected to that in the last one for improvement of usability of PE. And input data are put into each column of PE in parallel according to the maximum data number in each rearranged block. The proposed architecture is described by VHDL. Also, its function is evaluated by MentorTM. Even though the hardware complexity is somewhat increased, the throughput rate is improved about twofold.

  • PDF

ANALYSIS OF TURBULENT HEAT TRANSFER FROM STAGGERED PIN-FIN ARRAYS WITH DIAMOND SHAPED ELEMENTS AT VARIOUS GEOMETRICAL CONFIGURATIONS (엇갈린 다이아몬드형 핀휜의 형상에 따른 난류열전달 성능해석)

  • Cho, A.T.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.20-26
    • /
    • 2008
  • A numerical study is carried out to analyze the steady three-dimensional turbulent flow and convective heat transfer in a staggered pin-fin array with diamond shaped elements at various geometrical configurations. Steady Reynolds-averaged Navier-Stokes equations and energy equation are solved using a finite volume based solver. Shear stress transport (SST) model is used as turbulence closure. The computational domain is composed of one pitch of pin-fin displacement with periodic boundary conditions on the surfaces normal to the streamwise direction and the cross-streamwise direction. The numerical results for Nusselt number and friction factor are validated with experimental results. The effects of pin angle, pin height and pitch on Nusselt number, friction factor and efficiency index are investigated.

A Comparative Study on the PSO and APSO Algorithms for the Optimal Design of Planar Patch Antennas (평면형 패치 안테나의 최적설계를 위한 PSO와 APSO 알고리즘 비교 연구)

  • Kim, Koon-Tae;Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1578-1583
    • /
    • 2013
  • In this paper, stochastic optimization algorithms of PSO (Particle Swarm Optimization) and APSO (Adaptive Particle Swam Optimization) are studied and compared. It is revealed that the APSO provides faster convergence and better search efficiency than the conventional PSO when they are adopted to find the global minimum of a two-dimensional function. The advantages of the APSO comes from the ability to control the inertia weight, and acceleration coefficients. To verify that the APSO is working better than the standard PSO, the design of a 10GHz microstrip patch as one of the elements of a high frequency array antenna is taken as a test-case and shows the optimized result with 5 iterations in the APSO and 28 iterations in th PSO.

Photoelectrochemical characterization of surface-modified CuInS2 nanorod arrays prepared via template-assisted growth and transfer

  • Yang, Wooseok;Kim, Jimin;Oh, Yunjung;Moon, Jooho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.401-401
    • /
    • 2016
  • Although vertically aligned one-dimensional (1D) structure has been considered as efficient forms for photoelectrode, development of efficient 1D nanostructured photocathode are still required. In this sense, we recently demonstrated a simple fabrication route for CuInS2 (CIS) nanorod arrays from aqueous solution by template-assisted growth-and-transfer method and their feasibility as a photoelectrode for water splitting. In this study, we further evaluated the photoelectrochemical properties surface-modified CIS nanorod arrays. Surface modification with CdS and ZnS was performed by successive ion layer adsorption and reaction (SILAR) method, which is well known as suitable technique for conformal coating throughout nanoporous structure. With surface modification of CdS and ZnS, both photoelectrochemical performance and stability of CuInS2 nanorod arrays were improved by shifting of the flat-band potential, which was analyzed both onset potential and Mott-schottky plot.

  • PDF

A Study on the Acoustic Fault Detection System of Insulators from Their Radiation Noises

  • Park, Kyu-Chil;Yoon, Jong-Rak
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.510-514
    • /
    • 2011
  • To detect the insulator in the fault state on the electric poles, we first measured radiation sounds from normal state insulators and error state insulators in the anechoic chamber. We processed the signals in frequency domain to find the features with filter bank, narrow band and wide band analysis. So we could found two apparent results from their frequency spectrums - one was 120Hz harmonic components, the other was high average noise level than normal state ones. Then we also introduced a technique for the direction detection of the fault state insulator using the cross correlation from the three dimensional array microphones. To eliminate the noise signal from unexpected directions, we suggested the zero padding technique in cross correlation function. From these, we could conclude that acoustic fault detection techniques are useful of the detection of insulators' faults and the estimation of the direction of the fault state insulators.

Preparation of gold nanoparticle/single-walled carbon nanotube nanohybrids using biologically programmed peptide for application of flexible transparent conducting films

  • Yang, MinHo;Choi, Bong Gill
    • Carbon letters
    • /
    • v.20
    • /
    • pp.26-31
    • /
    • 2016
  • In this study, we report a general method for preparation of a one-dimensional (1D) arrangement of Au nanoparticles on single-walled carbon nanotubes (SWNTs) using biologically programmed peptides as structure-guiding 1D templates. The peptides were designed by the combination of glutamic acid (E), glycine (G), and phenylalanine (F) amino acids; peptides efficiently debundled and exfoliated the SWNTs for stability of the dispersion and guided the growth of the array of Au nanoparticles in a controllable manner. Moreover, we demonstrated the superior ability of 1D nanohybrids as flexible, transparent, and conducting materials. The highly stable dispersion of 1D nanohybrids in aqueous solution enabled the fabrication of flexible, transparent, and conductive nanohybrid films using vacuum filtration, resulting in good optical and electrical properties.

Algorithm Development for Infiltration Control in Component Fabrication Process of Metal Matrix Composites and Their Evaluation (금속기복합재료의 부품 제조공정에 관한 함침제어알고리즘 개발 및 평가)

  • Kang, Chung-Gil;Yun, Kung-Sik
    • Journal of Korea Foundry Society
    • /
    • v.16 no.6
    • /
    • pp.523-536
    • /
    • 1996
  • This paper relates to fabrication processing analysis of metal matrix composites by the injection of liquid metal into a fibrous preforms. One dimensional heat transfer analysis during squeeze infiltration process of aluminum base composites has been studied. An analysis method was investigated for the temperature distribution, infiltration velocity and melt infiltration characteristics with the commercial preform with short fiber array. When molten metal is infiltrated in a fibrous preform with random orientation, phase transformation will be occurred in a region such as molten metal, solidified region, preform region and infiltration composites region. a mathematical modelling for a solidification phenomena in fabrication process of metal matrix composites using a squeeze infiltration technique was investigated by the basic relations for liquid metal into a fibrous preform. The temperature distribution of theoretical results was compared with experimental data.

  • PDF

Development of On-line Temperature Prediction Model for Plate Rolling (후판 압연의 온라인 온도예측 모델 개발)

  • 서인식;이창선;조세돈;주웅용
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.283-292
    • /
    • 1999
  • Temperature prediction model was developed for on-line application to plate rolling mills of POSCO. The adequate boundary conditions of heat transfer coefficients were obtained by comparing the predicted temperature with the measured temperatures taken by measuring system in plate rolling mill of POSCO. In obtaining the boundary condition which minimize the mean and standard deviation of the difference between prediction and measurement, orthogonal array for experimental design was used to reduce the calculation time of large data set. To predict the temperature drop at four edge of plate in one dimensional model, the energy change by heat transfer though directions perpendicular to thickness direction was treated like that by deformation. And the heat transfer through four edge directions was inferred from that through thickness direction with two coefficients of depth and severity of temperature drop at the edge. The boundary condition for the depth and severity of temperature drop were also determined using the measured temperature.

  • PDF

Z-map Model Using Triangular Grids (삼각 격자를 이용한 Z-map 모델)

  • Park, Pae-Yong;Ahn, Jeong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.824-828
    • /
    • 2000
  • Prior to the downloading of the NC codes to a machining center, the NC tool-path can be verified in a computer. The Z-map is one of the tools for the verification of NC tool-path. The Z-map is a two dimensional array in which the height values of the Z-axis direction vectors are stored. The Z-axis direction vectors are arranged in a rectangular grid pattern on the XY plane. The accuracy of the simulation comes from the grid interval. In the rectangular Z-map, the distances between the grid points are different. The distance in diagonal direction is larger than those in X or Y axis directions. For the rendering of the Z-map, a rectangular grid is divided into two triangular facets. Depending on the selection of a diagonal, there are two different cases. In this paper, triangular Z-map, in which the Z-axis direction vectors are arranged in a triangular grid pattern on XY plane, is proposed. In the triangular Z-map, the distances between grid points are equal. There is no ambiguity to make triangular facets for the rendering.

  • PDF