Browse > Article
http://dx.doi.org/10.5714/CL.2016.20.026

Preparation of gold nanoparticle/single-walled carbon nanotube nanohybrids using biologically programmed peptide for application of flexible transparent conducting films  

Yang, MinHo (Department of Materials Science and Engineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign)
Choi, Bong Gill (Department of Chemical Engineering, Kangwon National University)
Publication Information
Carbon letters / v.20, no., 2016 , pp. 26-31 More about this Journal
Abstract
In this study, we report a general method for preparation of a one-dimensional (1D) arrangement of Au nanoparticles on single-walled carbon nanotubes (SWNTs) using biologically programmed peptides as structure-guiding 1D templates. The peptides were designed by the combination of glutamic acid (E), glycine (G), and phenylalanine (F) amino acids; peptides efficiently debundled and exfoliated the SWNTs for stability of the dispersion and guided the growth of the array of Au nanoparticles in a controllable manner. Moreover, we demonstrated the superior ability of 1D nanohybrids as flexible, transparent, and conducting materials. The highly stable dispersion of 1D nanohybrids in aqueous solution enabled the fabrication of flexible, transparent, and conductive nanohybrid films using vacuum filtration, resulting in good optical and electrical properties.
Keywords
carbon nanotube; gold nanoparticle; peptide; transparent film;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tan YN, Lee JY, Wang DIC. Uncovering the design rules for peptide synthesis of metal nanoparticles. J Am Chem Soc, 132, 5677 (2010). http://dx.doi.org/10.1021/ja907454f.   DOI
2 Li L, Stupp SI. One-dimensional assembly of lipophilic inorganic nanoparticles templated by peptide-based nanofibers with binding functionalities. Angew Chem Int Ed, 44, 1833 (2005). http://dx.doi.org/10.1002/anie.200462142.   DOI
3 Slocik JM, Naik RR. Probing peptide–nanomaterial interactions. Chem Soc Rev, 39, 3454 (2010). http://dx.doi.org/10.1039/B918035B.   DOI
4 Slocik JM, Naik RR. Biologically programmed synthesis of bimetallic nanostructures. Adv Mater, 18, 1988 (2006). http://dx.doi.org/10.1002/adma.200600327.   DOI
5 Huang J, Lin L, Sun D, Chen H, Yang D, Li Q. Bio-inspired synthesis of metal nanomaterials and applications. Chem Soc Rev, 44, 6330 (2015). http://dx.doi.org/10.1039/C5CS00133A.   DOI
6 Mahmoud KA, Hrapovic S, Luong JHT. Picomolar detection of protease using peptide/single walled carbon nanotube/gold nanoparticle-modified electrode. ACS Nano, 2, 1051 (2008). http://dx.doi.org/10.1021/nn8000774.   DOI
7 Georgakilas V, Gournis D, Tzitzios V, Pasquato L, Guldi DM, Prato M. Decorating carbon nanotubes with metal or semiconductor nanoparticles. J Mater Chem, 17, 2679 (2007). http://dx.doi.org/10.1039/B700857K.   DOI
8 Modugno G, Ménard-Moyon C, Prato M, Bianco A. Carbon nanomaterials combined with metal nanoparticles for theranostic applications. Br J Pharmacol, 172, 975 (2015). http://dx.doi.org/10.1111/bph.12984.   DOI
9 Sadek AZ, Bansal V, McCulloch DG, Spizzirri PG, Latham K, Lau DWM, Hu Z, Kalantar-zadeh K. Facile, size-controlled deposition of highly dispersed gold nanoparticles on nitrogen carbon nanotubes for hydrogen sensing. Sens Actuators B Chem, 160, 1034 (2011). http://dx.doi.org/10.1016/j.snb.2011.09.022.   DOI
10 Eder D. Carbon nanotube-inorganic hybrids. Chem Rev, 110, 1348 (2010). http://dx.doi.org/10.1021/cr800433k.   DOI
11 Kim SN, Slocik JM, Naik RR. Strategy for the assembly of carbon nanotube: metal nanoparticle hybrids using biointerfaces. Small, 6, 1992 (2010). http://dx.doi.org/10.1002/smll.201000755.   DOI
12 Dang X, Yi H, Han MH, Qi J, Yun DS, Ladewski R, Strano MS, Hammond PT, Belcher AM. Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices. Nat Nanotechnol, 6, 377 (2011). http://dx.doi.org/10.1038/nnano.2011.50.   DOI
13 Moradi M, Li Z, Qi J, Xing W, Xiang K, Chiang YM, Belcher AM. Improving the capacity of sodium ion battery using a virus-templated nanostructured composite cathode. Nano Lett, 15, 2917 (2015). http://dx.doi.org/10.1021/nl504676v.   DOI
14 Li M, Dujardin E, Mann S. Programmed assembly of multi-layered protein/nanoparticle-carbon nanotube conjugates. Chem Commun, (39), 4952 (2005). http://dx.doi.org/10.1039/B509109H.   DOI
15 Thakkar KN, Mhatre SS, Parikh RY. Biological synthesis of metallic nanoparticles. Nanomedicine, 6, 257 (2010). http://dx.doi.org/10.1016/j.nano.2009.07.002.   DOI
16 Dieckmann GR, Dalton AB, Johnson PA, Razal J, Chen J, Giordano GM, Muñoz E, Musselman IH, Baughman RH, Draper RK. Controlled assembly of carbon nanotubes by designed amphiphilic peptide helices. J Am Chem Soc, 125, 1770 (2003). http://dx.doi.org/10.1021/ja029084x.   DOI
17 Lee KY, Kim M, Hahn J, Suh JS, Lee I, Kim K, Han SW. Assembly of metal nanoparticle-carbon nanotube composite materials at the liquid/liquid interface. Langmuir, 22, 1817 (2006). http://dx.doi.org/10.1021/la052435b.   DOI
18 Hunter RJ. Foundations of Colloid Science, 2nd ed., Oxford University Press, New York (2001).
19 Tournus F, Latil S, Heggie MI, Charlier JC. π-Stacking interaction between carbon nanotubes and organic molecules. Phys Rev B, 72, 075431 (2005). http://dx.doi.org/10.1103/PhysRevB.72.075431.   DOI
20 Smith JA, Josowicz M, Engelhard M, Baer DR, Janata J. Gold-polyaniline composites. Part II: effects of nanometer sized particles. Phys Chem Chem Phys, 7, 3619 (2005). http://dx.doi.org/10.1039/B507099F.   DOI
21 Kawamoto H, Uchida T, Kojima K, Tachibana M. G band Raman features of DNA-wrapped single-wall carbon nanotubes in aqueous solution and air. Chem Phys Lett, 432, 172 (2006). http://dx.doi.org/10.1016/j.cplett.2006.10.019.   DOI
22 Rao AM, Eklund PC, Bandow S, Thess A, Smalley RE. Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature, 388, 257 (1997). http://dx.doi.org/10.1038/40827.   DOI
23 Park HS, Choi BG, Hong WH, Jang SY. Interfacial interactions of single-walled carbon nanotube/conjugated block copolymer hybrids for flexible transparent conductive films. J Phys Chem C, 116, 7962 (2012). http://dx.doi.org/10.1021/jp209796f.   DOI
24 Li C, Thostenson ET, Chou TW. Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube-based composites. Appl Phys Lett, 91, 223114 (2007). http://dx.doi.org/10.1063/1.2819690.   DOI
25 Sanchez C, Boissiere C, Cassaignon S, Chaneac C, Durupthy O, Faustini M, Grosso D, Laberty-Robert C, Nicole L, Portehault D, Ribot F, Rozes L, Sassoye C. Molecular engineering of functional inorganic and hybrid materials. Chem Mater, 26, 221 (2014). http://dx.doi.org/10.1021/cm402528b.   DOI
26 Yang SB, Kong BS, Jung HT. Multistep deposition of gold nanoparticles on single-walled carbon nanotubes for high-performance transparent conducting films. J Phys Chem C, 116, 25581 (2012). http://dx.doi.org/10.1021/jp3080332.   DOI
27 Tang Z, Kotov NA, Giersig M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science, 297, 237 (2002). http://dx.doi.org/10.1126/science.1072086.   DOI
28 Mo X, An Y, Yun CS, Yu SM. Nanoparticle-assisted visualization of binding interactions between collagen mimetic peptide and collagen fibers. Angew Chem Int Ed, 45, 2267 (2006). http://dx.doi.org/10.1002/anie.200504529.   DOI
29 Gunjakar JL, Kim IY, Lee JM, Jo YK, Hwang SJ. Exploration of nanostructured functional materials based on hybridization of inorganic 2D nanosheets. J Phys Chem C, 118, 3847 (2014). http://dx.doi.org/10.1021/jp410626y.   DOI
30 Olsson RT, Azizi Samir MAS, Salazar-Alvarez G, Belova L, Ström V, Berglund LA, Ikkala O, Nogués J, Gedde UW. Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol, 5, 584 (2010). http://dx.doi.org/10.1038/nnano.2010.155.   DOI
31 Sotiropoulou S, Sierra-Sastre Y, Mark SS, Batt CA. Biotemplated nanostructured materials. Chem Mater, 20, 821 (2008). http://dx.doi.org/10.1021/cm702152a.   DOI