• Title/Summary/Keyword: One Cylinder Misfiring

Search Result 5, Processing Time 0.023 seconds

Monitoring of Misfiring Status of Ship Engines Using Minute Speed Changes in the Crankshaft (크랭크축의 미세속도변화를 이용한 선박엔진의 착화불량 상태 감시)

  • Kang, Ho Hyeon;Ahn, Jung Hwan;Kim, Hwa Young
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.51-56
    • /
    • 2022
  • In this study an efficient method for detecting and monitoring engine misfiring, focusing on minute speed changes in the crankshaft is proposed., Its validity is verified using various misfiring cases. Typically, the crankshaft speed fluctuates around the normal value depending on the engine misfiring status. Even a minute speed change in the crankshaft can be estimated by measuring the rotation time of each tooth of the 118-tooth flywheel attached to the crankshaft with a 2-MHz timer. Therefore, a speed pattern for an in-line six-cylinder engine consists of 236 tooth rotation speeds corresponding to the two rotations of the crankshaft, in which all the cylinders complete four-stroke cycle. FFT analysis can reduce the number of components of a speed pattern from 236 to just four major components: - fundamental frequency_(f), 2f, 3f, 6f., - This makes the comparison of the misfiring cases simpler and faster. In the experiment, five engine status cases (one normal firing and, four misfiring cases) were simulated. While the 6f component was the largest for the normal case, the f component increased as misfiring occurred one, two apart, and two consecutive times. The 3D FFT pattern comprising the ratio of f, 2f, and 3f, 6f showed that the distance between the misfiring and normal states was larger

A theoretical investigation of mis-firing effects on the crankshaft axial vibration of diesel engine (박용디젤기관의 착화실패가 추진축계종진동에 미치는 영향에 관한 이론적 연구)

  • 변창주;김의간;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.28-36
    • /
    • 1988
  • Since the oil shocks of 1970s, the quality of the fuel oil for marine diesel engines has become more degarded than ever. When the poorer quality fuel is burned, carbon residues of the fuel oil cause blockage of the fuel injection valve nozzle and troubles of fuel injection system. The mis-firing of engine occurs due to the decrease of fuel quantity injected, the decrease of compression pressure in the slow speed range, the increase of fuel leaked and the high ignition temperature of degraded fuel etc. This paper is to investigate theoretically the effects of mis-firing on the crankshaft axial vibration of diesel engine. The cylinder pressure in operation is calculated by the computer aided simulation of closed cycle for a large two-stroke diesel engine and also the exciting force of axial vibration and the resonance amplitudes are calculated. And then, the condition of normal state, misfiring and one-cylinder cut-off operation are analyzed. The results of calculations show good agreements with those of the actual measurements.

  • PDF

A Study for Measurements of In-Cylinder Residual Gas Fraction using Fast Response FID in an SI Engine (스파크점화기관에서 고속응답 FID를 이용한 실린더내 잔류가스량 측정에 관한 연구)

  • 송해박;조한승;이종화;이귀영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.80-89
    • /
    • 1998
  • The residual gas in an spark-ignition engine is one of important factors on emissions and performance such as combustion stability. With high residual gas fractions, flame speed and maximum combustion temperature are decreased and these are deeply related with combustion stability especially at idle and NOx emission at relatively high engine load. Therefore, there is a need to characterize the residual gas fraction as a function of the engine operating load. Therefore, there is a need to characterize the residual gas fraction as a function of the engine operating parameters. In the present study, the quantitative measurement technique of residual gas fraction was studied by using Fast Response Flame Ionization Detector(FRFID). The measuring technique and model for estimation of residual gas fraction were reported in this paper. By the assuming that the raw signal from FRFID saturates with the same slope for firing and misfiring cycle, in-cylinder hydrocarbon(HC) concentration can be estimated. Residual gas fraction can be obtained from the in-cylinder HC concentration measured at firing and motoring condition. The developed measurement and calibration procedure were applied to the limited engine operating and design condition such as intake manifold pressure and valve overlap. The results show relevant trends by comparing those from previous studies.

  • PDF

Control of Torsional Vibration using Uneven Crank Angels on the Shafting for Diesel Power Plant (부등간격 크랭크 배치각에 의한 디젤 발전소 축계의 비틀림진동 제어)

  • 이돈출;유정대;김정렬
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.655-661
    • /
    • 2000
  • Diesel power plant can be used as a power supplier for the isolated place where consumption of electric power is variable. The reason is that mobility and durability of diesel engine is superior to those of other thermal engines. However, there are some disadvantages for using these diesel engines such as bigger vibratory excitation force comparing to the others, which result from high combustion pressure of cylinders and inertia force of piston reciprocating masses. In this paper, control and optimization of torsional vibration of 12K90MC-S engine for diesel power plant using uneven crank angles is identified by theoretical analysis and vibration measurement.

  • PDF

Probabilistic Analysis of Forced-Damped Torsional Vibration of Marine Diesel Propulsion Shafting Systems (선박디젤추진축계 감쇠강제비틂진동의 확률적 해석)

  • S.Y. Ahn;M.B. Krakovski
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.157-166
    • /
    • 1994
  • Recently. the excessive diesel engine torsional excitation of typical energy saving ships has resulted in severe damages of the propeller shaft. Up to now the design and torsional vibration analysis of the marine diesel shafting system has been performed on the assumption that excitations are deterministic. But a diesel engine excitation varies randomly from cylinder to cylinder and from cycle to cycle, due to the imperfect operation of the engine components due to engine misfiring. consequently, a more rational analysis method for the propulsion shafting torsional vibration is required. In this paper probabilistic analysis method of the marine diesel engine shafting system under torsional vibration is presented. First a response surface representing maximum shear stresses in a shafting system is built. Then Monte Carlo simulation with subsequent approximation of the results by one of Pearson's curves, is performed. Some numerical results based on the proposed method are compared with t도 some numerical data available. They show acceptable agreements with the data.

  • PDF