• Title/Summary/Keyword: Oncogenesis

Search Result 60, Processing Time 0.031 seconds

Possible role of Pax-6 in promoting breast cancer cell proliferation and tumorigenesis

  • Zong, Xiangyun;Yang, Hongjian;Yu, Yang;Zou, Dehong;Ling, Zhiqiang;He, Xiangming;Meng, Xuli
    • BMB Reports
    • /
    • v.44 no.9
    • /
    • pp.595-600
    • /
    • 2011
  • Pax 6, a member of the paired box (Pax) family, has been implicated in oncogenesis. However, its therapeutic potential has been never examined in breast cancer. To explore the role of Pax6 in breast cancer development, a lentivirus based short hairpin RNA (shRNA) delivery system was used to knockdown Pax6 expression in estrogen receptor (ER)-positive (MCF-7) and ER-negative (MDA-MB-231) breast cancer cells. Effect of Pax6 silencing on breast cancer cell proliferation and tumorigenesis was analyzed. Pax6-RNAi-lentivirus infection remarkably downregulated the expression levels of Pax6 mRNA and protein in MCF-7 and MDA-MB-231 cells. Accordingly, the cell viability, DNA synthesis, and colony formation were strongly suppressed, and the tumorigenesis in xenograft nude mice was significantly inhibited. Moreover, tumor cells were arrested at G0/G1 phase after Pax6 was knocked down. Pax6 facilitates important regulatory roles in breast cancer cell proliferation and tumor progression, and could serve as a diagnostic marker for clinical investigation.

US28, a Virally-Encoded GPCR as an Antiviral Target for Human Cytomegalovirus Infection

  • Lee, Sungjin;Chung, Yoon Hee;Lee, Choongho
    • Biomolecules & Therapeutics
    • /
    • v.25 no.1
    • /
    • pp.69-79
    • /
    • 2017
  • Viruses continue to evolve a new strategy to take advantage of every aspect of host cells in order to maximize their survival. Due to their central roles in transducing a variety of transmembrane signals, GPCRs seem to be a prime target for viruses to pirate for their own use. Incorporation of GPCR functionality into the genome of herpesviruses has been demonstrated to be essential for pathogenesis of many herpesviruses-induced diseases. Here, we introduce US28 of human cytomegalovirus (HCMV) as the best-studied example of virally-encoded GPCRs to manipulate host GPCR signaling. In this review, we wish to summarize a number of US28-related topics including its regulation of host signaling pathways, its constitutive internalization, its structural and functional analysis, its roles in HCMV biology and pathogenesis, its proliferative activities and role in oncogenesis, and pharmacological modulation of its biological activities. This review will aid in our understanding of how pathogenic viruses usurp the host GPCR signaling for successful viral infection. This kind of knowledge will enable us to build a better strategy to control viral infection by normalizing the virally-dysregulated host GPCR signaling.

Induction of MAP kinase phosphatase 3 through Erk/MAP kinase activation in three oncogenic Ras (H-, K- and N-Ras)-expressing NIH/3T3 mouse embryonic fibroblast cell lines

  • Koo, JaeHyung;Wang, Sen;Kang, NaNa;Hur, Sun Jin;Bahk, Young Yil
    • BMB Reports
    • /
    • v.49 no.7
    • /
    • pp.370-375
    • /
    • 2016
  • Ras oncoproteins are small molecular weight GTPases known for their involvement in oncogenesis, which operate in a complex signaling network with multiple effectors. Approximately 25% of human tumors possess mutations in a member of this family. The Raf1/MEK/Erk1/2 pathway is one of the most intensively studied signaling mechanisms. Different levels of regulation account for the inactivation of MAP kinases by MAPK phosphatases in a cell type- and stimuli-dependent manner. In the present study, using three inducible Ras-expressing NIH/3T3 cell lines, we demonstrated that MKP3 upregulation requires the activation of the Erk1/2 pathway, which correlates with the shutdown of this pathway. We also demonstrated, by applying pharmacological inhibitors and effector mutants of Ras, that induction of MKP3 at the protein level is positively regulated by the oncogenic Ras/Raf/MEK/Erk1/2 signaling pathway.

c-myc Expression: Keep the Noise Down!

  • Chung, Hye-Jung;Levens, David
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.157-166
    • /
    • 2005
  • The c-myc proto-oncogene encodes a nuclear protein that is deregulated and/or mutated in most human cancers. Acting primarily as an activator and sometimes as a repressor, MYC protein controls the synthesis of up to 10-15% of genes. The key MYC targets contributing to oncogenesis are incompletely enumerated and it is not known whether pathology arises from the expression of physiologic targets at abnormal levels or from the pathologic response of new target genes that are not normally regulated by MYC. Regardless of which, available evidence indicates that the level of MYC expression is an important determinant of MYC biology. The c-myc promoter has architectural and functional features that contribute to uniform expression and help to prevent or mitigate conditions that might otherwise create noisy expression. Those features include the use of an expanded proximal promoter, the averaging of input from dozens of transcription factors, and real-time feedback using the supercoil-deformable Far UpStream Element (FUSE) as physical sensor of ongoing transcriptional activity, and the FUSE binding protein (FBP) as well as the FBP interacting repressor (FIR) as effectors to enforce normal transcription from the c-myc promoter.

Interplay between Epigenetics and Genetics in Cancer

  • Choi, Jae Duk;Lee, Jong-Soo
    • Genomics & Informatics
    • /
    • v.11 no.4
    • /
    • pp.164-173
    • /
    • 2013
  • Genomic instability, which occurs through both genetic mechanisms (underlying inheritable phenotypic variations caused by DNA sequence-dependent alterations, such as mutation, deletion, insertion, inversion, translocation, and chromosomal aneuploidy) and epigenomic aberrations (underlying inheritable phenotypic variations caused by DNA sequence-independent alterations caused by a change of chromatin structure, such as DNA methylation and histone modifications), is known to promote tumorigenesis and tumor progression. Mechanisms involve both genomic instability and epigenomic aberrations that lose or gain the function of genes that impinge on tumor suppression/prevention or oncogenesis. Growing evidence points to an epigenome-wide disruption that involves large-scale DNA hypomethylation but specific hyper-methylation of tumor suppressor genes, large blocks of aberrant histone modifications, and abnormal miRNA expression profile. Emerging molecular details regarding the modulation of these epigenetic events in cancer are used to illustrate the alterations of epigenetic molecules, and their consequent malfunctions could contribute to cancer biology. More recently, intriguing evidence supporting that genetic and epigenetic mechanisms are not separate events in cancer has been emerging; they intertwine and take advantage of each other during tumorigenesis. In addition, we discuss the collusion between epigenetics and genetics mediated by heterochromatin protein 1, a major component of heterochromatin, in order to maintain genome integrity.

Immunohistochemical study of p53 and mdm-2 in Squamous Cell Carcinoma and Leukoplakia of Head and Neck. (두경부 편평상피세포암과 백반증에서 p53과 mdm-2의 면역조직화학적 연구)

  • 김용주;정환우;황찬승;양훈식
    • Korean Journal of Bronchoesophagology
    • /
    • v.4 no.1
    • /
    • pp.73-78
    • /
    • 1998
  • The mutation of p53 is the most common genetic alteration found in human cancers and has oncogenic properties. mdm-2 is a recently discoverd that controls the p53 activity by binding of its protein, so negative feedback loop has been suggested in which p53 induces mdm-2 expression. The purpose of this study was to analyze the expression of p53 in leukoplakias, mdm-2 in squamous cell carcinomas, and relationship between p53 and mdm-2 expression in leukoplakias and squamous cell carcinomas. The results were as follows : 1) The p53 was expressed 33.4% in leukoplakias 2) The mdm-2 was expressed 8.3% in leukoplakias and 22.7% in squamous cell carcinomas. 3) The expression rate of p53 was higher in specimens negative for mdm-2 than in specimens positive for mdm-2, but there was not significant relationship between p53 and mdm-2 expression. In conclusion p53 was thought to participate in early phase of oncogenesis, and mdm-2 was thought to have a role as a oncogene in squamous cell carcinoma of head and neck. Though there was not significant relationship between p53 and mdm-2 expression, mdm-2 was thought to inhibit p53 activity.

  • PDF

Pathogenesis of Oncoviruses: A Systemic Review

  • Zain Ul Abedien;Kainat Gul;Sara Khan;Maheen Shafiq;Khizar Rahman;Muhammad Hassan Nawaz
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.2
    • /
    • pp.135-146
    • /
    • 2023
  • Viral oncology is focused on understanding the relationship between cancer and viruses, which are known to play a role in the development of certain types of cancer. Approximately 15-20% of human cancers are believed to be caused by oncogenic viruses, and as a result, there is significant interest in understanding how these viruses contribute to cancer development. There are several viruses that have been linked to cancer, including human papillomavirus, hepatitis B and C virus, Epstein-Barr virus, human T-cell lymphotropic virus type 1, Kaposi's sarcoma-associated herpesvirus, and Merkel cell polyomavirus. Each of these viruses is associated with different types of cancer, and the mechanisms by which they contribute to cancer development are diverse. This article discusses these mechanisms as well as current and future strategies for preventing and treating virus-associated cancers with the goal of presenting a thorough review of the current state of knowledge in viral oncology and to highlight the importance of continued research in this field.

TGF-β1 Protein Expression in Non-Small Cell Lung Cancers is Correlated with Prognosis

  • Huang, Ai-Li;Liu, Shu-Guang;Qi, Wen-Juan;Zhao, Yun-Fei;Li, Yu-Mei;Lei, Bin;Sheng, Wen-Jie;Shen, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.19
    • /
    • pp.8143-8147
    • /
    • 2014
  • To investigate the expression intensity and prognostic significance of TGF-${\beta}1$ protein in non-small cell lung cancer (NSCLC), immunohistochemistry was carried out in 194 cases of NSCLC and 24 cases of normal lung tissues by SP methods. The PU (positive unit) value was used to assess the TGF-${\beta}1$ protein expression in systematically selected fields under the microscope with Leica Q500MC image analysis. We found that the TGF-${\beta}1$ PU value was nearly two-fold higher in NSCLC than in normal lung tissues (p=0.000), being associated with TNM stages (p=0.000) and lymph node metastases (p=0.000), but not to patient age, gender, smoking history, tumor differentiation, histological subtype and tumor location (P>0.05). Univariate analysis indicated that patients with high TGF-${\beta}1$ protein expression and lymph node metastases demonstrated a poor prognosis (both p=0.000,). Multivariate analysis showed that TGF-${\beta}1$ protein expression (RR = 2.565, p=0.002) and lymph node metastases (RR=1.874, p=0.030) were also independent prognostic factors. Thus, TGF-${\beta}1$ protein expression may be correlated to oncogenesis and serve as an independent prognostic biomarker for NSCLC.

Correaltion of Human Papilloma Virus Infection Status with Tonsillar Squamous Cell Carcinoma (편도암의 발암 원인으로 Human Papilloma Virus를 통한 발암 기전과의 상관 관계)

  • Kim, Se-Heon;Byun, Hyung-Kwon;Cheon, Jei-Young;Park, Young-Min;Jung, Jin-Sei;Lee, So-Yoon
    • Korean Journal of Head & Neck Oncology
    • /
    • v.23 no.1
    • /
    • pp.21-25
    • /
    • 2007
  • Background:Squamous cell carcinoma(SCC)of the palatine tonsils represents approximately 15-23% of all intraoral SCC. The most frequently reported risk factors for oropharyngeal cancer are smoking and alcohol. In a recent overview of HPV and tonsillar squamous cell carcinoma(TC), 51% contained HPV DNA, and HPV-16 being the most frequent type. We aimed to clarify whether HPV directly effects on the oncogenesis and biologic behavior of TC by comparison with infection prevalence, and physical status of virus. Material and Method:We used HPV genotyping DNA chip(Biocore, Korea, Seoul) arrayed by multiple oligonucleotide probes of L1 sequence of 26 types of HPV and HPV genotypes are identified by fluorescence scanner. The copy numbers of HPV E2 and E6 open reading frames(ORF) were assessed using a TaqMan-based 5'-exonuclease quantitative real-time PCR assay. The ratio of E2 to E6 copy numbers was calculated to determine the physical status of HPV-16 viral gene. Results:We observed a significant difference in HPV prevalence between 52 TCs and 69 CFTs(73.1% vs. 11.6%), and most of the HPVs were type 16(87.2%)and non-episomal(94.1%) state. Conclusions:This study regarding HPV infection prevalence and mechanism in the largest population of palatine tonsillar squamous cell carcinoma with chronic follicular tonsillitis revealed significant difference pf HPV prevalence between TC and CFT. Most of HPV were 16 type and integrated or mixed, HPV-16 integration could be directly related to tonsillar carcinogenesis.

Recovery of Genes Epigenetically Altered by the Histone Deacetylase Inhibitor Scriptaid and Demethylating Agent 5-Azacytidine in Human Leukemia Cells

  • Park, Eun-Kyung;Jeon, Eun-Hyung;Kim, In-Ho;Park, Seon-Yang
    • Genomics & Informatics
    • /
    • v.8 no.4
    • /
    • pp.185-193
    • /
    • 2010
  • Histone deacetylation and demethylation are epigenetic mechanisms implicated in cancer. Studies regarding the role of modulation of gene expression utilizing the histone deacetylase inhibitor scriptaid and the demethylating agent 5-azacytidine in HL-60 leukemia cells have been limited. We studied the possibility of recovering epigenetically silenced genes by scriptaid and 5-azacytidine in human leukemia cells by DNA microarray analysis. The first group was leukemia cells that were cultured with 5-azacytidine. The second group was cultured with scriptaid. The other group was cultured with both agents. Two hundred seventy newly developed genes were expressed after the combination of 5-azacytidine and scriptaid. Twenty-nine genes were unchanged after the combination treatment of 5-azacytidine and scriptaid. Among the 270 genes, 13 genes were differed significantly from the control. HPGD, CPA3, CEACAM6, LOC653907, ETS1, RAB37, PMP22, FST, FOXC1, and CCL2 were up-regulated, and IGLL3, IGLL1, and ASS1 were down-regulated. Eleven genes associated with oncogenesis were found among the differentially expressed genes: ETS1, ASCL2, BTG2, BTG1, SLAMF6, CDKN2D, RRAS, RET, GIPC1, MAGEB, and RGL4. We report the results of our leukemia cell microarray profiles after epigenetic combination therapy with the hope that they are the starting point of selectively targeted epigenetic therapy.