• Title/Summary/Keyword: Onboard satellite antenna

Search Result 7, Processing Time 0.018 seconds

Performance Enhancement of a Satellite's Onboard Antenna Tracking Profile using the Ground Station Searching Method

  • Song, Young-Joo;Lee, Jung-Ro;Kang, Jihoon;Jeon, Moon-Jin;Ahn, Sang-Il
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.391-400
    • /
    • 2016
  • In satellite operations, stable maneuvering of a satellite's onboard antenna to prevent undesirable vibrations to the satellite body is required for high-quality high-resolution images. For this reason, the onboard antenna's angular rate is typically minimized while still satisfying the system requirement that limits the speed of the onboard antenna. In this study, a simple yet effective method, called the ground station searching method, is proposed to reduce the angular rate of a satellite's onboard antenna. The performance of the proposed method is tested using real flight data from the KOMPSAT-3 satellite. Approximately 83% of arbitrarily selected real flight scenarios from 66 test cases show reductions in the onboard antenna's azimuth angular rates. Additionally, reliable solutions were consistently obtained within a reasonably acceptable computation time while generating an onboard antenna tracking profile. The obtained results indicate that the proposed method can be used in real satellite operations and can reduce the operational loads on a ground operator. Although the current work only considers the KOMPSAT-3 satellite as a test case, the proposed method can be easily modified and applied to other satellites that have similar operational characteristics.

Acquisition, Processing and Image Generation System for Camera Data Onboard Spacecraft

  • C.V.R Subbaraya Sastry;G.S Narayan Rao;N Ramakrishna;V.K Hariharan
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.94-100
    • /
    • 2023
  • The primary goal of any communication spacecraft is to provide communication in variety of frequency bands based on mission requirements within the Indian mainland. Some of the spacecrafts operating in S-band utilizes a 6m or larger aperture Unfurlable Antenna (UFA for S-band links and provides coverage through five or more S-band spot beams over Indian mainland area. The Unfurlable antenna is larger than the satellite and so the antenna is stowed during launch. Upon reaching the orbit, the antenna is deployed using motors. The deployment status of any deployment mechanism will be monitored and verified by the telemetered values of micro-switch position before the start of deployment, during the deployment and after the completion of the total mechanism. In addition to these micro switches, a camera onboard will be used for capturing still images during primary and secondary deployments of UFA. The proposed checkout system is realized for validating the performance of the onboard camera as part of Integrated Spacecraft Testing (IST) conducted during payload checkout operations. It is designed for acquiring the payload data of onboard camera in real-time, followed by archiving, processing and generation of images in near real-time. This paper presents the architecture, design and implementation features of the acquisition, processing and Image generation system for Camera onboard spacecraft. Subsequently this system can be deployed in missions wherever similar requirement is envisaged.

Computational Complexity Analysis of Cascade AOA Estimation Algorithm Based on Massive Array Antenna Configuration (메시브 배열 안테나 형상에 따른 캐스케이드 도래각 추정 알고리즘의 계산 복잡도 분석)

  • Tae-yun Kim;Suk-seung Hwang
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.3
    • /
    • pp.277-287
    • /
    • 2024
  • In satellite systems, efficient communication and observation require identifying of specific signal arrival points using onboard antenna systems. When utilizing massive array antennas to estimate the angle of arrival (AOA) of signals, traditional high-performance AOA estimation algorithms such as Multiple Signal Classification (MUSIC) encounter extremely high complexity due to the numerous individual antenna elements. Although, in order to improve this computational complexity problem, the cascade AOA estimation algorithm with CAPON and beamspace-MUSIC was recently proposed, the comparison of the computational complexity of the proposed algorithm across different massive array antenna configurations has not yet been conducted. In this paper, we provide the analyzed results of the computational complexity of the proposed cascade algorithm based on various massive array antennas, and determine an optimal antenna configuration for the efficient AOA estimation in satellite systems.

Development and Field Test of the NEXTSat-2 Synthetic Aperture Radar (SAR) Antenna Onboard Vehicle (차세대소형위성 2호 영상 레이다 안테나 개발 및 차량 탑재 시험)

  • Shin, Goo-Hwan;Lee, Jung-Su;Jang, Tae Seong;Kim, Dong-Guk;Jung, Young-Bae
    • Journal of Space Technology and Applications
    • /
    • v.1 no.1
    • /
    • pp.33-40
    • /
    • 2021
  • Based on the requirements of a total weight of 42 kg or less, the NEXTSat-2 SAR (synthetic aperture radar) system was developed. As the NEXTSat-2 is a small-sized satellite, the SAR system was designed to account for about 40% of the dry mass of the payload relative to the total mass. Among the major components of the SAR system - which are an antenna, an RF transceiver, a baseband signal processor, and a power unit - a part with a particularly large dry mass is the antenna, the core of the SAR system. Whereas various selections are possible in consideration of gain and efficiency when designing the antenna, the micro-strip patch array antenna was adopted by reflecting the dry mass, power, and resolution required by the NEXTSat-2 project. In order to meet the mission requirement of the NEXTSat-2, the antenna was developed with a frequency of 9.65 GHz, a gain of 42.7 dBi, and a return loss of -15 dB. The performance of the antenna was verified by conducting a field test onboard the vehicle.

Design of Deployable Lightweight Antenna for Satellite SAR (위성 SAR 센서용 전개형 경량화 안테나 설계)

  • Lee, Taek-Kyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1104-1112
    • /
    • 2014
  • We present a design of the deployable lightweight antenna to be used in the satellite satisfying the required performance of the onboard sensor. The analysis is performed on the SAR antenna requirements, deploying techniques including material selection, and the characterization of deployable antenna with central disk. The performance of the solid deployable antennas and the mesh antennas are simulated, and the CFRP(Carbon Fiber Reinforced Plastics) samples are manufactured and tested. It is confirmed that the deployable antennas with central disk can meet the required performance by using deploying panels or mesh.

Quantitative analysis of the errors associated with orbit uncertainty for FORMOSAT-3

  • Wu Bor-Han;Fu Ching-Lung;Liou Yuei-An;Chen Way-Jin;Pan Hsu-Pin
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.87-90
    • /
    • 2005
  • The FORMOSAT-3/COSMIC mission is a micro satellite mission to deploy a constellation of six micro satellites at low Earth orbits. The final mission orbit is of an altitude of 750-800 lan. It is a collaborative Taiwan-USA science experiment. Each satellite consists of three science payloads in which the GPS occultation experiment (GOX) payload will collect the GPS signals for the studies of meteorology, climate, space weather, and geodesy. The GOX onboard FORMOSAT -3 is designed as a GPS receiver with 4 antennas. The fore and aft limb antennas are installed on the front and back sides, respectively, and as well as the two precise orbit determination (POD) antennas. The precise orbit information is needed for both the occultation inversion and geodetic research. However, the instrument associated errors, such as the antenna phase center offset and even the different cable delay due to the geometric configuration of fore- and aft-positions of the POD antennas produce error on the orbit. Thus, the focus of this study is to investigate the impact of POD antenna parameter on the determination of precise satellite orbit. Furthermore, the effect of the accuracy of the determined satellite orbit on the retrieved atmospheric and ionospheric parameters is also examined. The CHAMP data, the FORMOSAT-3 satellite and orbit parameters, the Bernese 5.0 software, and the occultation data processing system are used in this work. The results show that 8 cm error on the POD antenna phase center can result in ~8 cm bias on the determined orbit and subsequently cause 0.2 K deviation on the retrieved atmospheric temperature at altitudes above 10 lan.

  • PDF

Modified Fold Type Helicone Reflector for Efficient Satellite TT&C Having Variable Coverage Area (가변 커버리지를 갖는 위성 관제용 접이식 헬리콘 반사체 안테나 성능 연구)

  • Lee, Sang-Min;Lee, Woo-Kyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.914-923
    • /
    • 2009
  • Helix antennas have been widely applied to satellite TT&C, data communication and GPS receiver systems onboard military, remote sensing and communication purpose satellites. The helix antennas are known to be convenient to control impedance and radiation coverage characteristics with a maximum directivity in satellite z-axis. Waveguide horn is commonly used for radar system that needs ultra-wideband pulse for exploration ground radar and electromagnetic disability measurement etc. It has high efficiency and low reflection characteristics provided by the low-profile shape and suppressed radiation distortion. In this paper, a waveguide horn structure incorporated with helix antenna design is proposed for satellite applications that require ultra-wideband pulse radar and high rate RF data communication link to ground station over wide coverage area. The main design concern is to synthesize variable beam forming pattern based on modified horn-helix combination helicone structure such that multi-mission antenna is implemented applicable for TT&C, earth observation, high data rate transmission. Waveguide horn helps to reduce the overall antenna structure size by introduction fold type reflector connected to the tapered helix antenna. The next generation KOMPSAT satellite currently under development requires high-performance precision attitude control system. We present an initial design of a hybrid hern-helix antenna structure suitable for efficient RF communication module design of multi-purpose satellite systems.