• Title/Summary/Keyword: On-site phase

Search Result 659, Processing Time 0.028 seconds

Effect of Soil Environment on Diversity and Population of Aerobic Soil Bacteria from Baekdudaegan Mountain Forests in Gyeongsangbuk-do, Korea (경상북도 산림지역의 토양 환경이 호기성 토양 세균의 다양성과 밀도에 미치는 영향)

  • Park, Chul Yeong;Lee, Sun Keun;Kim, Ji Hong;Lee, Sang Yong;Lee, Jong Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.501-508
    • /
    • 2012
  • This study was carried out to compare species diversity of soil bacteria from Baekdudaegan mountain forests (Bonghwa-gun, Mungyeong-si and Sangju-si) in Gyeongsangbuk-do and to analyze the effects of soil environments on diversity and population of soil bacteria. Soil bacteria were isolated from soil samples by streak plate method, and identified by DNA extaction and 16S rDNA sequence analyses. The population of soil bacteria from the soil samples of Bonghwa-gun was the highest with $5.1{\times}10^5cfu/g$, and followed by those from Mungyeong-si and Sangju-si with $1.9{\times}10^5cfu/g$ and $1.1{\times}10^5cfu/g$, respectively. The population of soil bacteria from surface layer soil was the highest, and then gradually decreased according to soil depth. The increase in population of soil bacteria from soil samples of different sites was correlated with the increase of the altitude of soil sampling site, depth of A horizon, liquid phase among three phases of soil, water content and bulk density of soil. Two hundreds and sixty eight bacterial colonies from Bonghwa-gun were classified into 10 species, 8 genera. One hundred and thirty four bacterial colonies from Mungyeong-si were classified into 15 species, 9 genera. Forty four bacterial colonies from Sangju-si were classified into 5 species, 2 genera. The dominant species (occupancy rate) from Bonghwa-gun and Mungyeong-si were Bacillus weihenstephanensis (36% and 40%, respectively), and Sangju-si was Bacillus cereus (39%). The relationships between soil environment and community structure of soil bacteria were analyzed statistically by using ecological indices. The diversity, evenness and dominance indices of soil bacteria were 6.30, 2.04 and 0.59 in Bonghwa-gun, 9.09, 2.94 and 0.51 in Mungyeong-si, and 4.55, 2.34 and 0.71 in Sangju-si, respectively. The diversity and evenness indices were increased by the increase of water content, drainage condition and gravel content of soil, while the dominance index was decreased.

Effects of Red or Black Ginseng Extract in a Rat Model of Inflammatory Temporomandibular Joint Pain (흰 쥐의 턱관절 염증성 통증모델에서 홍삼 및 흑삼추출물의 효과)

  • Lee, Hyeon-Jeong;Kim, Yun-Kyung;Choi, Ja-Hyeong;Lee, Jung-Hwa;Kim, Hye-Jin;Seong, Mi-Gyung;Lee, Min-Kyung
    • Journal of dental hygiene science
    • /
    • v.17 no.1
    • /
    • pp.65-72
    • /
    • 2017
  • Temporomandibular joint (TMJ) pain is characterized by persistent jaw pain associated with dysfunction and tenderness of the temporomandibular muscles and joints. The aim of this study was to investigate whether treatment with red or black ginseng extract helps in the modulation of inflammatory TMJ pain. Male Sprague-Dawley rats weighing 220~260 g were used. The experimental group was subdivided into 4 groups based on the treatment method (n=6, each group): formalin (5%, $30{\mu}l$), formalin after distilled water (vehicle), formalin after red or black ginseng extract (per oral, single or repeated, respectively). To induce TMJ pain, $30{\mu}l$ of formalin was injected into the articular cavity under ether inhalation anesthesia. The number of noxious behavioral responses of scratching the facial region proximal to the injection site was recorded for 9 successive 5-min intervals following formalin injection. Repeated treatment with red or black ginseng extract reduced the nociceptive responses in the second phase (11~45 min). Nuclear factor erythroid 2-related factor 2 (Nrf2) is an oxidative stress-mediated transcription factor. Both ginsengs significantly down-regulated the increased Nrf2 level compared to the vehicle group. In the test for liver and kidney functions, repeated treatment with red or black ginseng was not different compared to the vehicle group. These results indicate that red and black ginseng extract might be promising analgesic agents in the treatment of inflammatory TMJ pain.

Hexachlorobenzene Dechlorination Ability of Microbes from Canal and Estuary Sediments

  • Anotai, Jin;Voranisarakul, J.;Wantichapichat, W.;Chen, I.M.
    • Journal of Wetlands Research
    • /
    • v.9 no.1
    • /
    • pp.107-114
    • /
    • 2007
  • This study aimed to investigate the hexachlorobenzene (HCB) dechlorinating ability of sediment microbes collected from a natural canal receiving secondary effluents from an industrial estate and nearby factories. Nine sites along the stream and one in the estuary in the Gulf of Thailand into which the canal spills were specified and sampling for sediment and water. Preliminary analysis of the sediments showed that the first four sites nearest to the discharging location were contaminated by HCB within the range of 0.18 to 1.25 ppm. Apart from that, 1,3,5-trichlorobenzene which has never been commercially produced or used in any manufacturing processes except for the transformation from higher chlorinated benzene was also identified in the range of 0.16 to 0.24 ppm. This suggested a possibility of sporadically HCB contamination in this stream. Of more important, people in the community along this canal earn their living by coastal fishery; hence, posing a risk of spreading HCB and its less chlorinated congeners via food chain from caught marine creatures to human. As a result, there is an urgent need to understand the behavior of HCB dechlorination in this stream sediment which can lead to a clean-up action in the future. Serum bottles with sediment slurries (sediment to water ratio of 1:1 (v/v) and filtered to remove particles larger than 0.7 mm) from each site were inoculated with 2 mg/l of HCB, kept anaerobically in the dark at room temperature without any nourishment, and analyzed for HCB and its less-chlorinated congeners every 6 days. Total chemical oxygen demand, suspended solids, and volatile suspended solids were in the range of 21,492-73,584, 158,100-518,100 and 6,000-32,700 mg/l, respectively. It was found that all sediment slurries began to dechlorinate HCB in 12 to 30 days and the HCB was completely removed within 42 to 60 days or so. On the other hand, there was no HCB dechlorination occurred in the controlled set which was sterilized by autoclaving prior to the addition of HCB. This implies that the HCB transformation was solely due to microorganisms' activities. HCB was dechlorinated principally via pentachlolobenzene to 1,2,3,5-tetrachlorobenzene and terminated at 1,3,5-trichlorobenzene which is the major pathway as reported by many researchers. Dichlorobenzene has not been detected in any samples within the dechlorination period of 60 days. The results indicate that the microbial matrix in the sediment of this stream has an outstanding capability to dechlorinate HCB. Existing substrates and nutrients which mainly sorbed onto the solid phase and the typical temperature in Thailand were sufficient and suitable to promote the activities of these HCB-dechlorinating microbes.

  • PDF

Compositional Effect on the Magnetic Properties of Nd-Fe-Co-B and Nd-Fe-Co-Zr-B Bonded Magent (합금조성에 따른 Nd-Fe-Co-B 및 Nd-Fe-Co-Zr-B계 본드자석의 자기특성)

  • 최승덕;이우영;양충진
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.2
    • /
    • pp.60-68
    • /
    • 1991
  • In compacting the melt-spun $Nd_{14}Fe_{76}Co_{4}B_{6}$ and $Nd_{10.5}Fe_{79}Co_{2}Zr_{15}B_{7}$ magnetic powders. the difference in composition induces a different behavior of closed packing rate as a function of aspect ratio of the powders. The $Nd_{10.5}Fe_{79}Co_{2}Zr_{1.5}B_{7}$ alloy having a low Co/Fe ratio (low density) shows the better green density to have an enhanced closed packing rate. An empirical power equation relating the green density with the compacting pressure was obtained such as ${\phi}(g/cm^{2})=5.2~5.6{\times}P^{0.045~0.065}(ton/cm^{2})$. The $Nd_{14}Fe_{76}Co_{4}B_{6}$ alloy having a high Nd/Fe ratio possesses much finer grain size(50~60 nm) than that of $Nd_{10.5}Fe_{79}Co_{2}Zr_{1.5}B_{7}$ alloy and shows the higher coercivity($iH_{c}=14~15kOe$). The higher Nd/Fe ratio in the melt-spun Nd-Fe-Co-B alloy, where the domain wall pinning mechanism was found to be predominant, assists the formation of Nd-rich grain boundary phase acting as a pinning site. The grain boundary ranges over $12~16\;{\AA}$ thick in the Nd-Fe-Co-B alloy while it ranges over $8~12\;{\AA}$ thick in the Nd-Fe-Co-Zr-B alloy.

  • PDF

A Case Study of BIM-based Framework on Constructability Tasks (BIM기반 골조공사의 시공성분석 업무 적용사례에 관한 연구)

  • Lee, Seung-Il;Kwon, Nam-Ha;Cho, Young-Sang
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.5
    • /
    • pp.45-54
    • /
    • 2010
  • Recently more and more construction projects have become high-rise, complex and intelligent. Accordingly, such projects require an integrated management system for tasks, with a lean approach to construction with work processes for management and productivity. In particular, Construction Information Technology (CIT) fields are concerned with Building Information Modeling (BIM), which represents the process of generating and managing building data during its life cycle. Constructability research has progressed for the project goal which is a cost-time-quality of optimization by integrated construction knowledge and experience. However, the current constructability process has not been performed efficiently, as the existing 2D drawings and papers lack consistent and accurate information, it is difficult to share the contents of work, and the use of information is inefficient. This study proposes that the reformation and enhancement of BIM-based constructability work process can lead to brilliant performance in the framework of the construction phase through achieving collaboration between the design team and the workers at the site.

Production of pediocin by Chemical Synthesis and Bactericidal Mode of Action

  • Koo, Min-Seon;Kim, Wang-June;Kwon, Dea-Young;Min, Kyung-Hee
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.149-153
    • /
    • 2001
  • To investigate the mode of bactericidal action for antimicrobial peptide, pediocin, synthetic and mutant pediocins were prepared by direct chemical synthesis. Native pediocin was purified from Pedio-coccus acidilactici M and its conformational structure and bactericidal functions were analyzed and compared to synthetic pediocin. Schematic mode of pediocin actions, how pediocin binds on the target cell membrane, penetrates and makes tunnel are proposed. For these purposes, primary and secondary structures of pediocin was analyzed and disulfide bond assignment was also done. The pediocin purified from P. acidilactici M had high effective bactericidal ability against gram positive bacteria, especially Listeria monocytogenes and was very stable at extreme pHs and even at high temperatures such as autoclaving temperature (121$^{\circ}C$). Pediocin was consisted of 44 amino acids with four cysteines. Novel synthetic peptides were achieved by solid phase peptide synthesis(SPPS) method. To explain the function of cysteine in C-terminal region, mutant pediocin, Ped[C24A+C44A], was synthesized and their structural and biological functions were analyzed. Second mutant pediocin, Ped[KllE], was prepared to explain the function of lysine at 11 of N-terminal part of pediocin, especially loop of $\beta$-sheet, and to predict the initial binding site of pediocin. The native and synthetic pediocins was showed random coil conformation by spectropolarimetry in moderate conditions. This conformation was observed in extreme conditions such as high temperature and low and high pHs, also. Circular dichroism(CD) data also showed the existence of $\beta$-turn structure in N-terminal part both native and synthetic pediocins. A structural model for pediocin predicts that 18 amino acids in the N-terminal part of the peptide assume a three-strand $\beta$-sheet conformation. This random coil in C-terminal part of pediocin was converted to folding structure, helix structure, in nonpolar solvents such as alcohol and TFE. The disulfide bond between $^{9}$ Cys and $^{14}$ Cys was concrete and inevitable, however, evidences of disulfide bond between $^{24}$ Cys and $^{44}$ Cys was not. Data of Ped[C24A+C44A], pediocin mutant showed that $^{44}$ Cys was required during killing the target cells but not inevitable, since Ped[C24A+C44A] still have bactericidal activity but much less than native pediocin. Another pediocin mutant, Ped[KllE], had still bactericidal activity, was controversial to propose that positive charge like as $^{11}$ Lys in loop or hinge in bacteriocin bound or helped to binding to microorganism with electrostatic interaction between cell membrane especially teichoic acid and positive amino acid nonspecifically. The conformation of pediocin among native, synthetic and mutant pediocins did not show big difference. The conformations between oxidized and reduced pediocin were almost similar regardless of native or synthetic.

  • PDF

Involvement of Cdk Inhibitor p21(WIP1/CIP1) in G2/M Arrest of Human Myeloid Leukemia U937 Cells by N-Methyl-N'-Nitro-N-Nitrosoguanidine (N-methyl-N'-nitro-N-nitrosoguanidine에 의한 인체백혈병세포의 G2/M arrest 유발에서 Cdk inhibitor p21(WIP1/CIP1)의 관련성)

  • Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • In this paper, to elucidate the further mechanisms of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced growth arrest, we investigated the effect of MNNG on cell cycle and proliferation in U937 cells, a p53-null human myeloid leukemia cell line. It was found that MNNG causes an arrest at the G2/M phase of the cell cycle and induces apoptosis, which is closely correlated to inhibition of cyclin B1 and cyelin-dependent kinase (Cdk) 2-associated kinase activities. MNNG treatment in. creased protein and mRNA levels of the Cdk inhibitor p21(WAF1/CIP1), and activated the reporter construct of a p21 promoter. By using p21 promoter deletion constructs, the MNNG-responsive element was mapped to a region between 113 and 61 relative to the transcription start site. These data indicate that in U937 cells MNNG can circumvent the loss of wild-type p53 function and induce critical downstream regulatory events leading to transcriptional activation of p21. Present results indicate that the p53-independent up-regulation of p21 by MNNG is likely responsible for the inhibition of cyclin/Cdk complex kinase activity rather than the down-regulation of cyclins and Cdks expression. These novel phenomena have not been previously described and provide important new insights into the possible biological effects of MNNG.

Thermal Compression of Copper-to-Copper Direct Bonding by Copper films Electrodeposited at Low Temperature and High Current Density (저온 및 고전류밀도 조건에서 전기도금된 구리 박막 간의 열-압착 직접 접합)

  • Lee, Chae-Rin;Lee, Jin-Hyeon;Park, Gi-Mun;Yu, Bong-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.102-102
    • /
    • 2018
  • Electronic industry had required the finer size and the higher performance of the device. Therefore, 3-D die stacking technology such as TSV (through silicon via) and micro-bump had been used. Moreover, by the development of the 3-D die stacking technology, 3-D structure such as chip to chip (c2c) and chip to wafer (c2w) had become practicable. These technologies led to the appearance of HBM (high bandwidth memory). HBM was type of the memory, which is composed of several stacked layers of the memory chips. Each memory chips were connected by TSV and micro-bump. Thus, HBM had lower RC delay and higher performance of data processing than the conventional memory. Moreover, due to the development of the IT industry such as, AI (artificial intelligence), IOT (internet of things), and VR (virtual reality), the lower pitch size and the higher density were required to micro-electronics. Particularly, to obtain the fine pitch, some of the method such as copper pillar, nickel diffusion barrier, and tin-silver or tin-silver-copper based bump had been utillized. TCB (thermal compression bonding) and reflow process (thermal aging) were conventional method to bond between tin-silver or tin-silver-copper caps in the temperature range of 200 to 300 degrees. However, because of tin overflow which caused by higher operating temperature than melting point of Tin ($232^{\circ}C$), there would be the danger of bump bridge failure in fine-pitch bonding. Furthermore, regulating the phase of IMC (intermetallic compound) which was located between nickel diffusion barrier and bump, had a lot of problems. For example, an excess of kirkendall void which provides site of brittle fracture occurs at IMC layer after reflow process. The essential solution to reduce the difficulty of bump bonding process is copper to copper direct bonding below $300^{\circ}C$. In this study, in order to improve the problem of bump bonding process, copper to copper direct bonding was performed below $300^{\circ}C$. The driving force of bonding was the self-annealing properties of electrodeposited Cu with high defect density. The self-annealing property originated in high defect density and non-equilibrium grain boundaries at the triple junction. The electrodeposited Cu at high current density and low bath temperature was fabricated by electroplating on copper deposited silicon wafer. The copper-copper bonding experiments was conducted using thermal pressing machine. The condition of investigation such as thermal parameter and pressure parameter were varied to acquire proper bonded specimens. The bonded interface was characterized by SEM (scanning electron microscope) and OM (optical microscope). The density of grain boundary and defects were examined by TEM (transmission electron microscopy).

  • PDF

Identification of process generating formaldehyde in a furniture manufacturer (특정 가구 제조 공장의 포름알데히드 발생 공정 노출 평가)

  • Yoo, Kye-Mook;Lee, Mi-Young
    • Analytical Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.243-247
    • /
    • 2014
  • Formaldehyde is defined as carcinogen causing leukaemia, lymphoma or nasopharyngeal carcinoma at high level of exposure. Furniture-manufacturing workers can be exposed to formaldehyde, which implies serious impact on health of the workers. The authors carried out ambient monitoring of formaldehyde in the field, and identified the source of formaldehyde generated during the working process by testing the condition in the laboratory settings. After sampling formaldehyde in the air with 2,4-DNPH (2,4-dinitrophenylhydrazine) coated silica gel, we extracted formaldehyde derivative with acetonitrile and analyzed the extract using HPLC with UV detector at 360 nm. Formaldehyde was separated by ACQUITY UPLC BEH $C_{18}$ column at a flow rate of 0.5 mL/min using 45% acetonitrile as mobile phase. The workers were exposed to higher level of formaldehyde than normal air. Formaldehyde up to 0.31 ppm was detected in the process of veneer attachment, which exceeded 0.3 ppm, the ceiling value of ACGIH standard. The laboratory test of measuring formaldehyde generated from the glue and veneer used in the attachment process resulted in more formaldehyde generation as the temperature increased, and more from the veneer. Heating the veneer to $100-150^{\circ}C$ following the real condition of the manufacturing site generated 1.14-2.70 ppm of formaldehyde from the sample, which was 2-5 times higher level than Korean limit of exposure (0.5 ppm). As the workers handling and processing the veneer which was produced by wet process had high possibility to be exposed to formaldehyde, urgent improvement and management of working environment of furniture manufacturer is demanded.

K Addition Effect of Co3O4-based Catalyst for N2O Decomposition (N2O 분해반응용 Co3O4 기반 촉매의 K첨가 효과)

  • Hwang, Ra Hyun;Park, Ji Hye;Baek, Jeong Hun;Im, Hyo Been;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.35-40
    • /
    • 2018
  • $Co_3O_4$ catalysts for $N_2O$ decomposition were prepared by co-precipitation method. Ce and Zr were added during the preparation of the catalyst as promoter with the molar ratio (Ce or Zr) / Co = 0.05. Also, 1 wt% $K_2CO_3$ was doped to the prepared catalyst with impregnation method to investigate the effect of K on the catalyst performance. The prepared catalysts were characterized with SEM, BET, XRD, XPS and $H_2-TPR$. The $Co_3O_4$ catalyst exhibited a spinel crystal phase, and the addition of the promoter increased the specific surface area and reduced the particle and crystal size. It was confirmed that the doping of K improves the catalytic activity by increasing the concentration of $Co^{2+}$ in the catalyst which is an active site for catalytic reaction. The catalytic activity tests were carried out at a GHSV of $45,000h^{-1}$ and a temperature range of $250{\sim}375^{\circ}C$. The K-impregnated $Co_3O_4$ catalyst showed much higher activity than $Co_3O_4$ catalysts with promoter only. It is found that the K-impregnation increased the concentration of $Co^{2+}$ more than the added of promoter did, and lowered the reduction temperature to a great extent.