• Title/Summary/Keyword: On-road measurement

Search Result 462, Processing Time 0.026 seconds

Establishment of the Measurement Model about the Adequate Urban Development Density using System Dynamics (시스템다이내믹스를 활용한 도시개발밀도의 적정성 평가 모델 구축 연구)

  • 전유신;문태훈
    • Korean System Dynamics Review
    • /
    • v.4 no.2
    • /
    • pp.71-94
    • /
    • 2003
  • The purpose of this dissertation is to build a development density control model and estimate optimum developmental density level for a sustainable urban growth management. To develop the model, system dynamics modeling approach was used. The model was developed to analyze how urban growth, transition, and decay occur depending on the interaction among population, houses, industry structure, land and urban infrastructure such as road, water supply, and sewage treatment facilities. The model was applied to Anyang city to estimate optimum density level. Extensive computer simulation was conducted to find out the maximum numbers of population, industry structure, houses, and cars that can be adequately sustained with the current Anyang city's infrastructure capacity. The computer simulation result shows that the city is overpopulated by some 90,000 people. It nab analyzed that 20% increase of existing capacity of urban infrastructure is necessary to support current population of Anyang city. To reduce the population to the adequate level whereby the current urban infrastructure can sustain, the current city regulation on floor area ratio needs be strengthened at least 20% to 35%.

  • PDF

A Study on the Evaluation Method of ACC Test Using Monocular Camera (단안카메라를 활용한 ACC 시험평가 방법에 관한 연구)

  • Kim, Bong-Ju;Lee, Seon-Bong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.3
    • /
    • pp.43-51
    • /
    • 2020
  • Currently, the second level of the six stages of self-driving technology, as defined by SAE, is commercialized, and the third level is preparing for commercialization. The purpose of ACC is to be evaluated as a system useful for preventing and preventing accidents by minimizing driver fatigue through longitudinal speed control and relative distance control of the vehicle. In this regard, for the study of safety assessment methods in the practical environment of ACC. Distance measurement method using monocular camera and data acquisition equipment such as DGPS are utilized. Based on the evaluation scenario considering the domestic road environment proposed by the preceding study, the relative distance obtained from equipment such as DPGS and the relative distance using a monocular camera in the actual test is verified by comparing and analyzing the safety assessment. The comparison by scenario results showed a minimum error rate of 3.83% in Scenario 1 and a maximum of 14.61% in Scenario 6. The cause of the maximum error is that the lane recognition is not accurate in the camera image and irregular operation conditions such as rushing in or exiting the surrounding area from the walkway. It is expected that safety evaluation using a monocular camera will be possible for other ADAS systems in the future.

Change in Reflection Performance of Highway Lanes Through Lane Washing and Sweeping (차선세척과 청소를 통한 고속도로 차선의 반사성능 변화)

  • Lee, Seong-Sik;Oh, Heung-Un
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.117-126
    • /
    • 2018
  • PURPOSES : The purpose of this paper is to analyze the change in lane reflection performance through lane washing and sweeping on highway lanes. METHODS : This paper compared and analyzed the changes in lane reflection performance before and after lane washing and sweeping. The research method was as follows. First, we selected four research sites on the Gyeong-bu Highway. Second, the parameters affecting lane reflection performance are classified into luminance, brightness, and number of glass beads. Third, the change in reflection performance was measured after washing /sweeping at the same place after studying 60m of the unwashed/unswept area. Fourth, the measurement results were compared and analyzed before and after lane washing/sweeping. RESULTS : The results of this study are as follows. First, lane washing improved the luminance and brightness by 4.2~21.4% and 1.4~5.1%, respectively, and reduced the number of glass beads per wash by 0.2~1.2%. Second, lane sweeping improved the luminance and brightness by 2.3~8.5% and 0.8~2.3%, respectively, and reduced the number of glass beads per sweep by 0.8~4.9%. CONCLUSIONS : By comparing the results of lane washing and sweeping, it was found that compared to lane sweeping, lane washing improved the luminance and fewer glass beads were dropped.

Bezier Curve-Based Path Planning for Robust Waypoint Navigation of Unmanned Ground Vehicle (무인차량의 강인한 경유점 주행을 위한 베지어 곡선 기반 경로 계획)

  • Lee, Sang-Hoon;Chun, Chang-Mook;Kwon, Tae-Bum;Kang, Sung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.429-435
    • /
    • 2011
  • This paper presents a sensor fusion-based estimation of heading and a Bezier curve-based motion planning for unmanned ground vehicle. For the vehicle to drive itself autonomously and safely, it should estimate its pose with sufficient accuracy in reasonable processing time. The vehicle should also have a path planning algorithm that enables to adapt to various situations on the road, especially at intersections. First, we address a sensor fusion-based estimation of the heading of the vehicle. Based on extended Kalman filter, the algorithm estimates the heading using the GPS, IMU, and wheel encoders considering the reliability of each sensor measurement. Then, we propose a Bezier curve-based path planner that creates several number of path candidates which are described as Bezier curves with adaptive control points, and selects the best path among them that has the maximum probability of passing through waypoints or arriving at target points. Experiments under various outdoor conditions including at intersections, verify the reliability of our algorithm.

Indoor air quality evaluation in intercity buses in real time traffic

  • Kazim O. Demirarslan;Serden, Basak
    • Advances in environmental research
    • /
    • v.11 no.1
    • /
    • pp.17-30
    • /
    • 2022
  • Road transport allows all forms of land conditions to be met at less cost. Because of this function, despite numerous disadvantages, it becomes the most frequently used method of transport, especially in underdeveloped or developing countries. One of the most significant factors used in evaluating the atmosphere's air quality is the amount of CO2, increasing people's density in indoor spaces. The amount of CO2 indoors is, therefore, vital to determine. In this study, CO2 and temperature measurements made on nine different bus journey was made in Turkey. The minimum and maximum values were recorded as 555 ppm and 3000 ppm CO2, respectively, in the measurements. On all journeys, the average concentration is 1088.72 ppm. The minimum and maximum values were measured as 17.4℃ and 32.7℃ in the temperature measurements, and the average of all trips was calculated to be 25.76℃. In this study conducted before the Covid-19 pandemic, it was determined that the amount of CO2 increased with the density and insufficient ventilation in the buses. The risk of infection increases in places with high human density and low clean air. For situations such as pandemics, CO2 measurement is a rapid indicator of determining human density.

A Study on Enhancing Outdoor Pedestrian Positioning Accuracy Using Smartphone and Double-Stacked Particle Filter (스마트폰과 Double-Stacked 파티클 필터를 이용한 실외 보행자 위치 추정 정확도 개선에 관한 연구)

  • Kwangjae Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.112-119
    • /
    • 2023
  • In urban environments, signals of Global Positioning System (GPS) can be blocked and reflected by tall buildings, large vehicles, and complex components of road network. Therefore, the performance of the positioning system using the GPS module in urban areas can be degraded due to the loss of GPS signals necessary for the position estimation. To deal with this issue, various localization schemes using inertial measurement unit (IMU) sensors, such as gyroscope and accelerometer, and Bayesian filters, such as Kalman filter (KF) and particle filter (PF), have been designed to enhance the performance of the GPS-based positioning system. Among Bayesian filters, the PF has been widely used for the target tracking and vehicle navigation, since it can provide superior performance in estimating the state of a dynamic system under nonlinear/non-Gaussian circumstance. This paper presents a positioning system that uses the double-stacked particle filter (DSPF) as well as the accelerometer, gyroscope, and GPS receiver on the smartphone to provide higher pedestrian positioning accuracy in urban environments. The DSPF employs a nonparametric technique (Parzen-window) to create the multimodal target distribution that approximates the posterior distribution. Experimental results show that the DSPF-based positioning system can provide the significant improvement of the pedestrian position estimation in urban environments.

  • PDF

A Study on The Frost Penetration Depth of Pavement with Field Temperature Data (도로포장 현장계측 온도데이터를 이용한 도로포장체의 동결깊이 연구)

  • Shin, Eun-Chul;Lee, Jae-Sik;Cho, Gyu-Tae
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.21-32
    • /
    • 2011
  • The frost penetration depth of pavement is usually estimated from the freezing index that made temperature data analysis of 30 years and decided the thickness of anti-frost layer. The field monitoring region in study was divided into five regions by freezing index 550~650$^{\circ}C{\cdot}$day, 450~550$^{\circ}C{\cdot}$day and 350~450$^{\circ}C{\cdot}$day. Each region has three-section of road pavement such as cutting area, boundary area of cutting and banking, and lower area of banking. The field monitoring system was established both in the section of anti-frost layer and in the section without anti-frost layer. The data analysis was conducted for determination of frost penetration depth within the paved road by the field monitoring system. The result showed that The temperature of subgrade without anti-frost layer shows below zero in centigrade for the region of freezing index 550~650$^{\circ}C{\cdot}$day, up and down around zero degree in subgrade for the region of freezing index 450~550$^{\circ}C{\cdot}$day, and there is no place existed below zero degree in subgrade for the region of freezing index below 450$^{\circ}C{\cdot}$day. With comparison of field frost penetration depth for the cross-sections of pavement, the cutting area shows the greatest frost penetration depth, and less influence of frost penetration depth for the boundary area of cutting and banking, and the least influenced for the lower area of banking.

The Measurement and Consideration of Path Loss in Domestic Terrain Environments for IMT-2000 (국내지형환경에서의 IMT-2000주파수 대 경로손실 측정 및 고찰)

  • 이상수;이동진;최학근;김준철;박원진
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.12
    • /
    • pp.547-552
    • /
    • 2002
  • In this paper, the path loss in domestic terrain environments for IMT-2000 are measured and considered. Domestic terrain environments are classified and received power is measured at 1.9201GHz. In addition, the Path loss is calculated with consideration of the radiation pattern of antennas based on the results of measurement. For the consideration of path loss in domestic terrain environments, each path loss are fitted with the same slope of a reference model as "COST-231 HATA Urban Model", and then both are compared. As a result, all of the path loss in domestic terrain environments are lower than the path loss of a reference model as "COST-231 HATA Urban Model". We found that a difference of path loss in domestic terrain environments and a reference model is 5dB in urban, 8dB in sparse urban, 12dll in dense suburban, 13dB in suburban, 19dB in sparse suburban, and 29dB in road.

Development of an Optical Range Finder for Surface Roughness Measurements (표면 요철 측정을 위한 광학적 거리 측정기 개발)

  • Eom, Jung-Hyun;Park, Hyun-Hee;Seo, Dong-Sun;Huh, Woong;Kim, Joon-Bum;Kim, Yon-Gon
    • Journal of IKEEE
    • /
    • v.2 no.1 s.2
    • /
    • pp.53-60
    • /
    • 1998
  • We develope a high repetition rate, short distance, optical range finder for surface roughness measurements of large structures, such as a highway road, etc. For range measurement based on a triangulation principle, we use a light emitting diode and an one dimensional Position sensitive photodetector for a light source and an angle detector of the reflected light at the object, respectively. The range finder has automatic power control and electrical background noise rejection capabilities which enable it to overcome variations of an object reflectance and to eliminate time-varying, as well as constant, background light noises. Our experimental results show less than ${\pm}1.5mm$ of measurement errors regardless of an object reflectance, for $22{\sim}38cm$ object ranges which are determined by considering the installation of the range finder and the depth of surface roughness.

  • PDF

Accuracy Analysis of Image Orientation Technique and Direct Georeferencing Technique

  • Bae Sang-Keun;Kim Byung-Guk
    • Spatial Information Research
    • /
    • v.13 no.4 s.35
    • /
    • pp.373-380
    • /
    • 2005
  • Mobile Mapping Systems are effective systems to acquire the position and image data using vehicle equipped with the GPS (Global Positioning System), IMU (Inertial Measurement Unit), and CCD camera. They are used in various fields of road facility management, map update, and etc. In the general photogrammetry such as aerial photogrammetry, GCP (Ground Control Point)s are needed to compute the image exterior orientation elements (the position and attitude of camera). These points are measured by field survey at the time of data acquisition. But it costs much time and money. Moreover, it is not possible to make sufficient GCP as much as we want. However Mobile Mapping Systems are more efficient both in time and money because they can obtain the position and attitude of camera at the time of photographing. That is, Image Orientation Technique must use GCP to compute the image exterior orientation elements, but on the other hand Direct Georeferencing can directly compute the image exterior orientation elements by GPS/INS. In this paper, we analyze about the positional accuracy comparison of ground point using the Image Orientation Technique and Direct Georeferencing Technique.

  • PDF