• Title/Summary/Keyword: On-line optimal control algorithm

Search Result 94, Processing Time 0.029 seconds

A on-line learning algorithm for recurrent neural networks using variational method (변분법을 이용한 재귀신경망의 온라인 학습)

  • Oh, Oh, Won-Geun;Suh, Suh, Byung-Suhl
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.1
    • /
    • pp.21-25
    • /
    • 1996
  • In this paper we suggest a general purpose RNN training algorithm which is derived on the optimal control concepts and variational methods. First, learning is regared as an optimal control problem, then using the variational methods we obtain optimal weights which are given by a two-point boundary-value problem. Finally, the modified gradient descent algorithm is applied to RNN for on-line training. This algorithm is intended to be used on learning complex dynamic mappings between time varing I/O data. It is useful for nonlinear control, identification, and signal processing application of RNN because its storage requirement is not high and on-line learning is possible. Simulation results for a nonlinear plant identification are illustrated.

  • PDF

On-line Optimal Control Technology for Central Heating System (중앙난방시스템의 온라인 최적제어기법에 관한 연구)

  • Ahn Byung Cheon;Choi Sang Gon;Cho Sung Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.140-146
    • /
    • 2005
  • The on-line optimal control algorithm for central heating system has been researched for minimizing energy consumption while maintaining the comfort of indoor thermal environment in terms of the environmental variables such as indoor heating load and outdoor temperature variation. This study has been done by using TRNSYS Program in order to analyze the central heating system. The optimal control algorithm shows good energy Performances in comparison with the conventional one.

Robust Constrained Predictive Control without On-line Optimizations

  • Lee, Y. I.;B. Kouvaritakis
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.27.4-27
    • /
    • 2001
  • A stabilizing control method for linear systems with model uncertainties and hard input constraints is developed, which does not require on-line optimizations. This work is motivated by the constrained robust MPC(CRMPC) approach [3] which adopts the dual mode prediction strategy (i.e. free control moves and invariant set) and minimizes a worst case performance criterion. Based on the observation that, a feasible control sequence for a particular state can be found as a linear combination of feasible sequences for other states, we suggest a stabilizing control algorithm providing sub-optimal and feasible control sequences using pre-computed optimal sequences for some canonical states. The on-line computation of the proposed method reduces to simple matrix multiplication.

  • PDF

Installation of MFC(Multiple FACTS Coordinated control) On-line System for the Spinning Reserve of a Reactive Power in Metropolitan Area (수도권 순동 무효전력 확보를 위한 FACTS 협조제어 시스템 온라인 설치)

  • Chang, Byung-Hoon;Moon, Seung-Pil;Ha, Yong-Gu;Jeon, Woong-Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2131-2134
    • /
    • 2010
  • In this paper, the on-line system schemes for coordinated control system of multiple FACTS were presented to enhance the voltage stability around the metropolitan areas. In order to coordinated control system of FACTS devices, MFC on-line system calculates the optimal set point(Vref, Qrev) of FACTS devices using the coordinated control algorithm with real time network data which is transferred from SCADA/EMS system. If the system is unstable after contingencies, the new operation set-point of FACTS would be determined using bus sensitivity from tangent vector at voltage instability point. Otherwise, we would determine the new operation set-point of FACTS for considering economical operation, like as active power loss minimization using Optimal Power Flow algorithm. As the test, MFC(Multiple FACTS Coordinated control) on-line system will be installed in Korea power system.

Engine-CVT Integrated Control Algorithm Considering Power train Loss and CVT Response Lag (동력전달계 동력손실계 CVT 응답지연을 고려한 엔진-CVT 통합제어 알고리즘)

  • 김달철;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.112-121
    • /
    • 2001
  • In this paper, an engine-CVT integrated control algorithm is suggested by considering the powertrain loss, inertia torque and the CVT ratio response lag. The integrated control algorithm consists of (1) the optimal engine power calculation and (2) determining of the optimal throttle valve opening and the optimal CVT ratio. The optimal engine power is obtained by compensating the inertia torque due to the CVT ratio change and the powertrain loss that is calculated iteration procedure. In addition, an algorithm to compensate the effect of the CVT ratio response lag on the drive torque is suggested by the engine speed compensation causing the increased optimal CVT ratio. Simulation results show that the engine-CVT integrated control algorithm developed in this study makes it possible to obtain better engine operation on the optimal operating line, which results in the improved fuel economy while satisfying the driver's demand.

  • PDF

Adaptive Fuzzy Neural Control of Unknown Nonlinear Systems Based on Rapid Learning Algorithm

  • Kim, Hye-Ryeong;Kim, Jae-Hun;Kim, Euntai;Park, Mignon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.95-98
    • /
    • 2003
  • In this paper, an adaptive fuzzy neural control of unknown nonlinear systems based on the rapid learning algorithm is proposed for optimal parameterization. We combine the advantages of fuzzy control and neural network techniques to develop an adaptive fuzzy control system for updating nonlinear parameters of controller. The Fuzzy Neural Network(FNN), which is constructed by an equivalent four-layer connectionist network, is able to learn to control a process by updating the membership functions. The free parameters of the AFN controller are adjusted on-line according to the control law and adaptive law for the purpose of controlling the plant track a given trajectory and it's initial values are off-line preprocessing, In order to improve the convergence of the learning process, we propose a rapid learning algorithm which combines the error back-propagation algorithm with Aitken's $\delta$$\^$2/ algorithm. The heart of this approach ls to reduce the computational burden during the FNN learning process and to improve convergence speed. The simulation results for nonlinear plant demonstrate the control effectiveness of the proposed system for optimal parameterization.

  • PDF

Optimal Engine Operation by Shift Speed Improvement for a CVT (CVT 변속속도 개선에 의한 엔진최적운전)

  • Lee, Hee-Ra;Kim, Hyun-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.546-551
    • /
    • 2001
  • In this paper, an algorithm to improve the optimal engine operation is suggested by increasing the CVT shift speed. By rearranging the CVT shift dynamic equation, it is found that the CVT shift speed depends on the line pressure as well as the primary pressure. Based on the shift dynamics, an algorithm to accomplish a faster shift speed is presented by increasing the line pressure. In order to apply the algorithm, dynamic models of the line pressure control valve and the ratio control valve are obtained by considering the CVT shift dynamics and model based controllers are designed. It is found from the simulation results that fuel economy can be improved by 2% in spite of the increased hydraulic loss due to the increased line pressure.

  • PDF

Anti-sway Control of Crane (기중기의 흔들림 방지제어)

  • Roh, Chi-Weon;Lee, Kwang-Won
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.977-979
    • /
    • 1996
  • This paper presents an algorithm to control the undesirable sway of a suspended load in the crane system that has a trade-off between positioning the load and suppressing the sway of the load. The aim is to transport the load to a specified place with small sway angle as quickly as possible. Dynamic model is based on a simple pendulum driven by a velocity drive that is mostly used for actuating a trolley in industry. Proposed algorithm is composed of two parts : one is a off-line optimal trajectory generator, the other on-line tracking control. The former produces optimal trajectories minimizing energy under the speed constraint of velocity drive. The latter controls outputs to track the generated trajectories. Digital simulations and experiments are performed on a pilot crane to demonstrate the performance of the proposed control algorithm.

  • PDF

Robust moving horizon control of nonlinear systems

  • Yang, Hyun-Suk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.279-282
    • /
    • 1995
  • In this paper, a moving horizon control algorithm, which can be applied for a wide class of nonlinear systems with control and state constraints, is considered. In a neighborhood of the origin, a linear feedback controller is applied. Outside this neighborhood, a moving horizon control law is applied. The time taken to solve an optimal control problem is considered in the algorithm so that the proposed control law can be applied as an on-line controller.

  • PDF

On-Line Optimal Efficiency Control for Permanent Magnet Synchronous Motors Driving electric Vehicles (전기자동차 구동용 영구자석형 동기전동기의 온라인 최적 효율제어)

  • Chun, Tae-Won
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.4
    • /
    • pp.586-593
    • /
    • 1994
  • This paper suggests the algorithm for on-line efficiency control of permancent magnet synchronous motors driving the electric vehicles. The existance of unigue d-axis current is verified, which generates the maximum efficiency at operating points of motor. Using the Fibonacci search method, d-axis current converges to the minimization of inverter input power, and to prevent the variation of motor speed in process of the efficiency control, the voltage decoupled control strategy is introduced. Through the experiments, the effects of an efficiency control algorithm are verified.