• Title/Summary/Keyword: On-line Parameter Identification

Search Result 41, Processing Time 0.025 seconds

Parameter Measurement and Identification for Induction Motors (유도 전동기의 매개변수 측정 및 동정)

  • 김규식;김춘환
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.282-290
    • /
    • 2001
  • The accurate identification of the motor parameters is crucially important to achieve high dynamic performance of induction motors. In this paper, th motor parameters such as stator(rotor) resistance, stator(rotor) leakage inductance, mutual inductance, and rotor inertia are measured in off-line. Stator(rotor) resistance and stator(rotor) leakage inductance are measured based on the stationary coordinate equations of induction motors. On the other hand, mutual inductance are measured under the scalar control. Finally, the inverse rotor time constant is identified in on-line using an extended kalman filter algorithm. To demonstrate the practical significance of the results, Some experimental results are presented.

  • PDF

Mechanical Parameter Identification of Servo Systems using Robust Support Vector Regression (Support Vector Regression을 이용한 서보 시스템의 기계적 상수 추정)

  • Cho Kyung-Rae;Seok Jul-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.468-480
    • /
    • 2005
  • The overall performance of AC servo system is greatly affected the uncertainties of unpredictable mechanical parameter variations and external load disturbances. To overcome this problem, it is necessary to know different parameters and load disturbances subjected to position/speed control. This paper proposes an on-line identification method of mechanical parameters/load disturbances for AC servo system using support vector regression(SVR). The experimental results demonstrate that the proposed SVR algorithm is appropriate for control of unknown servo systems even with time-varying/nonlinear parameters.

On-line Modeling for Nonlinear Process Systems using the Adaptive Fuzzy-Neural Network (적응 퍼지-뉴럴 네트워크를 이용한 비선형 공정의 On-line 모델링)

  • Park, Chun-Seong;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.537-539
    • /
    • 1998
  • In this paper, we construct the on-line model structure for the nonlinear process systems using the adaptive fuzzy-neural network. Adaptive fuzzy-neural network usually consists of two distinct modifiable structure, with both, the premise and the consequent part. These two parts can be adapted by different optimization methods, which are the hybrid learning procedure combining gradient descent method and least square method. To achieve the on-line model structure, we use the recursive least square method for the consequent parameter identification of nonlinear process. We design the interface between PLC and main computer, and construct the monitoring and control simulator for the nonlinear process. The proposed on-line modeling to real process is carried out to obtain the effective and accurate results.

  • PDF

The Vibration Control of Flexible Manipulators using Adaptive Input Shaper (적응 입력다듬기를 이용한 유연한 조작기의 진동제어)

  • 신효필;정영무;강이석
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.220-227
    • /
    • 1999
  • The position control accuracy of a robot arm is significantly deteriorated when a long slender arm robot is operated at a high speed. In this case, the robot arm needs to be modeled as a flexible structure, not a rigid one, and its control system needs to be designed with its elastic modes taken into account. In this paper, the vibration control scheme of a one-link flexible manipulator using adaptive input shaper in conjunction with PID controller is presented. The robot consists of a flexible arm manufactured with a thin aluminium plate, an AC servo motor with a harmonic drive for speed reduction, an optical encoder and an accelerometer. On-line identification of the vibration mode is done using the pruned decimation-in-time FFT algorithm to estimate the parameter of the input shaper. Experimental results of the flexible manipulator with a PID controller and input shaper are provided to show the effectiveness of the advocated controllers.

  • PDF

Integrated vibration control and health monitoring of building structures: a time-domain approach

  • Chen, B.;Xu, Y.L.;Zhao, X.
    • Smart Structures and Systems
    • /
    • v.6 no.7
    • /
    • pp.811-833
    • /
    • 2010
  • Vibration control and health monitoring of building structures have been actively investigated in recent years but treated separately according to the primary objective pursued. This paper presents a general approach in the time domain for integrating vibration control and health monitoring of a building structure to accommodate various types of control devices and on-line damage detection. The concept of the time-domain approach for integrated vibration control and health monitoring is first introduced. A parameter identification scheme is then developed to identify structural stiffness parameters and update the structural analytical model. Based on the updated analytical model, vibration control of the building using semi-active friction dampers against earthquake excitation is carried out. By assuming that the building suffers certain damage after extreme event or long service and by using the previously identified original structural parameters, a damage detection scheme is finally proposed and used for damage detection. The feasibility of the proposed approach is demonstrated through detailed numerical examples and extensive parameter studies.

A Simple Method for Identifying Mechanical Parameters Based on Integral Calculation

  • Han, Sang-Heon;Yoo, Anno;Yoon, Sang Won;Yoon, Young-Doo
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1387-1395
    • /
    • 2016
  • A method for the identification of mechanical parameters based on integral calculation is presented. Both the moment of inertia and the friction constant are identified by the method developed here, which is based on well-known mechanical differential equations. The mechanical system under test is excited according to a pre-determined low-frequency sinusoidal motion, minimizing the distortion, and increasing the accuracy of the results. The parameters are identified using integral calculation, increasing the robustness of the results against measurement noise. Experimental data are supported by simulation, confirming the effectiveness of the proposed technique. The performance improvements shown here are of use in the design of speed and position controllers and observers. Owing to its simplicity, this method can be readily applied to commercial inverter products.

SPECTRAL LINE ANALYSIS/MODELING (SLAM) I: PVANALYSIS

  • Yusuke, Aso;Jinshi Sai (Insa Choi)
    • Publications of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.27-38
    • /
    • 2024
  • Line observations of young stellar objects (YSOs) at (sub)millimeter wavelengths provide essential information of gas kinematics in star and planet forming environments. For Class 0 and I YSOs, identification of Keplerian rotation is of particular interest, because it reveals presence of rotationally-supported disks that are still being embedded in infalling envelopes and enables us to dynamically measure the protostellar mass. We have developed a python library SLAM (Spectral Line Analysis/Modeling) with a primary focus on analyses of emission line data at (sub)millimeter wavelengths. Here, we present an overview of the pvanalysis tool from SLAM, which is designed to identify Keplerian rotation of a disk and measure the dynamical mass of a central object using a position-velocity (PV) diagram of emission line data. The advantage of this tool is that it analyzes observational features of given data and thus requires few computational time and parameter assumptions, in contrast to detailed radiative transfer modelings. In this article, we introduce the basic concept and usage of this tool, present an application to observational data, and discuss remaining caveats.

Temperature Control by On-line CFCM-based Adaptive Neuro-Fuzzy System (온 라인 CFCM 기반 적응 뉴로-퍼지 시스템에 의한 온도제어)

  • 윤기후;곽근창
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.4
    • /
    • pp.414-422
    • /
    • 2002
  • In this paper, we propose a new method of adaptive neuro-fuzzy control using CFCM(Conditional Fuzzy c-means) clustering and fuzzy equalization method to deal with adaptive control problem. First, in the off-line design, CFCM clustering performs structure identification of adaptive neuro-fuzzy control with the homogeneous properties of the given input and output data. The parameter identification are established by hybrid learning using back-propagation algorithm and RLSE(Recursive Least Square Estimate). In the on-line design, the premise and consequent parameters are tuned to RLSE with forgetting factor due to a characteristic of time variant. Finally, we applied the proposed method to the water temperature control system and obtained better results than previous works such as fuzzy control.

Application of recursive SSA as data pre-processing filter for stochastic subspace identification

  • Loh, Chin-Hsiung;Liu, Yi-Cheng
    • Smart Structures and Systems
    • /
    • v.11 no.1
    • /
    • pp.19-34
    • /
    • 2013
  • The objective of this paper is to develop on-line system parameter estimation and damage detection technique from the response measurements through using the Recursive Covariance-Driven Stochastic Subspace identification (RSSI-COV) approach. To reduce the effect of noise on the results of identification, discussion on the pre-processing of data using recursive singular spectrum analysis (rSSA) is presented to remove the noise contaminant measurements so as to enhance the stability of data analysis. Through the application of rSSA-SSI-COV to the vibration measurement of bridge during scouring experiment, the ability of the proposed algorithm was proved to be robust to the noise perturbations and offers a very good online tracking capability. The accuracy and robustness offered by rSSA-SSI-COV provides a key to obtain the evidence of imminent bridge settlement and a very stable modal frequency tracking which makes it possible for early warning. The peak values of the identified $1^{st}$ mode shape slope ratio has shown to be a good indicator for damage location, meanwhile, the drastic movements of the peak of $2^{nd}$ mode slope ratio could be used as another feature to indicate imminent pier settlement.

Trajectory Control of Field Robot Using Adaptive Control and System Identification (적응제어 및 시스템 규명을 이용한 Field Robot의 궤적 제어)

  • Kim, Seung-Su;Seo, U-Seok;Yang, Sun-Yong;Lee, Byeong-Ryong;An, Gyeong-Gwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.728-735
    • /
    • 2002
  • The Field robot means the machinery applied for outdoor tasks in construction, agriculture and undersea etc. In this study, to field-robotize a hydraulic excavator that is mostly used in construction working, we have developed an automatic excavation system and an adaptive control system. A model-reference adaptive controller has been designed based on the model that is obtained through off-line system identification. It is illustrated by computer simulations that the proposed control system gives good performance in the trajectory tracking control and the adaptation to parameter variation.