• 제목/요약/키워드: On-board battery charger

검색결과 48건 처리시간 0.021초

Design and Control of the Phase Shift Full Bridge Converter for the On-board Battery Charger of Electric Forklifts

  • Kim, Tae-Hoon;Lee, Seung-Jun;Choi, Woo-Jin
    • Journal of Power Electronics
    • /
    • 제12권1호
    • /
    • pp.113-119
    • /
    • 2012
  • This paper describes the design and control of a phase shift full bridge converter with a current doubler, which can be used for the on-board charger for the lead-acid battery of electric forklifts. Unlike the common resistance load, the battery has a large capacitance element and it absorbs the entire converter output ripple current, thereby shortening the battery life and degrading the system efficiency. In this paper a phase shift full bridge converter with a current doubler has been adopted to decrease the output ripple current and the transformer rating of the charger. The charge controller is designed by using the small signal model of the converter, taking into consideration the internal impedance of the battery. The stability and performance of the battery charger is then verified by constant current (CC) and constant voltage (CV) charge experiments using a lead-acid battery bank for an electric forklift.

A Controller Design for a Stability Improvement of an On-Board Battery Charger

  • Jeong, Hae-Gwang;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권4호
    • /
    • pp.951-958
    • /
    • 2013
  • This paper proposes the controller design for a stability improvement of an on-board battery charger. The system is comprised of a power factor correction (PFC) circuit and phase shift full-bridge DC-DC converter. The PFC circuit performs the control of the DC-link voltage and the input power factor. The DC-DC converter regulates the voltage and the current in the battery using the DC-link voltage. This paper proposes the design method of PI controller for the PFC circuit using a small signal model. The analysis and design of a type-three controller for the DC-DC converter is also presented. A simulation and experiment has been performed on the on-board battery charger and their results are presented to verify the validity of the proposed system.

적은 소자수를 갖고 전해커패시터가 없는 단일단 인터리브드 토템폴 전기자동차 탑재형 충전기 (A Reduced Component count Single-stage Electrolytic Capacitor-less Interleaved Totem-pole On-board Battery Charger)

  • 김병우;조우식;최세완
    • 전력전자학회논문지
    • /
    • 제22권6호
    • /
    • pp.510-516
    • /
    • 2017
  • This paper proposes a single-stage interleaved totem-pole on-board battery charger with a simple structure and a reduced component count. Apart from achieving ZVS turn-on of all switches and ZCS turn-off of all diodes, this charger does not require an input filter due to its CCM operation and bulky electrolytic capacitors, which in turn result in a high power density. A single-stage power conversion technique is applied to the interleaved structure in order to achieve a high power density and high efficiency. A 2.5 kW prototype of the proposed charger is also built and tested to validate the proposed operation.

전기자동차 탑재형 충전기용 부하직렬공진형 컨버터의 최적 공진주파수 설계 (Design of Optimal Resonant Frequency for Series-Loaded Resonant DC-DC Converter in EVs On-Board Battery Charger Application)

  • 오창열;김종수;이병국
    • 전력전자학회논문지
    • /
    • 제17권1호
    • /
    • pp.77-84
    • /
    • 2012
  • This paper describes the process of optimal resonant frequency design with full-bridge series-loaded resonant dc-dc converter in a high efficiency 3.3 kW on-board battery charger application for Electric Vehicles and Plug-in Hybrid Electric Vehicles. The optimal range of resonant frequency and switching frequency used for ZVS are determined by considering trade-off between loss of switching devices and resonant network with size of passive/magnetic devices. In addition, it is defined charging region of battery, the load of on-board charger, as the area of load by deliberating the characteristic of resonant. It is verified the designed frequency band by reflecting the defined area on resonant frequency.

전기자동차 탑재형 충전기 응용에서 위상변조 풀브리지 컨버터 성능 분석과 그 개선에 관한 연구 (Research on the Analysis and Improvement of the Performance of the Phase-Shifted Full-Bridge Converter for Electric Vehicle Battery Charger Applications)

  • 이일운
    • 전력전자학회논문지
    • /
    • 제20권5호
    • /
    • pp.479-490
    • /
    • 2015
  • The conventional phase-shifted full-bridge (PSFB) converter with an LC filter has been widely used for high-power applications of over 1.0 kW. However, the PSFB converter cannot obtain optimal power conversion efficiency during the battery charging in electric vehicle (EV) on-board battery charger applications because of its unique drawbacks, such as a large circulating current and very high voltage stress in the rectifier diodes. As a result, the converters with a capacitive filter, such as LLC resonant converters, replace the PSFB converter in the EV chargers. This study analyzes the problems of the PSFB converter for EV on-board charger applications in detail. Moreover, the newest converters based on the conventional PSFB converter are reviewed. On the basis of the reviews, new PSFB converter topologies are proposed for EV charger applications. The new topologies are formed by connecting the rectifier stage in the PSFB converter with the output of an LLC resonant converter in series. Many problems of the conventional PSFB converter for EV charger applications can be solved and the performance can be more improved because of this structure; this idea is confirmed by an experiment consisting of prototype battery chargers under the output voltage range of 250-450 Vdc at 3.3 kW.

NEV용 1.5[kW]급 저가형 충전기 개발에 관한 연구 (A Study on Development of 1.5 [kW] Low-cost Battery Charger for NEVs(Neighborhood Electric Vehicles))

  • 이찬송;정진범;이백행;허진
    • 전기학회논문지
    • /
    • 제61권4호
    • /
    • pp.574-579
    • /
    • 2012
  • In this paper, the battery charger developed which is satisfy by the characteristics of the rapid control and reduce the cost of the charger. analog-digital mixed mode controller developed with dedicated IC for PWM control and low-performance micro-processor is using for the operation control of charger. The low-cost NEV charger developed to verify the performance and usability is verified with charging battery experiment by of using developed charger.

전기자동차용 3.3 kW 탑재형 배터리 충전기 설계 및 제작 (Design and Implementation of 3.3 kW On-Board Battery Charger for Electric Vehicles)

  • 김종수;최규영;정혜만;이병국;조영진
    • 전력전자학회논문지
    • /
    • 제15권5호
    • /
    • pp.369-375
    • /
    • 2010
  • 본 논문은 전기자동차 (Electric Vehicles, EVs) 및 플러그인 하이브리드 자동차 (Plug-In Hybrid Electric Vehicles, PHEVs)용 리튬 이온 (Li-Ion) 배터리 충전을 위한 3.3 kW급 차량 탑재형 (On-Board) 충전기 하드웨어의 설계 및 제작에 대하여 기술한다. 차량 실장 특성을 고려하여 부하직렬공진형 dc-dc 컨버터를 적용하고, 80-130kHz의 고주파 스위칭 및 ZVS (Zero-Voltage Switching) 기법을 통해 수동소자의 크기를 최적화하여 5.84L, 5.8kg의 저부피, 경량을 달성한다. 전자부하를 대상으로 정전류 (Constant Current, CC) 및 정전압 (Constant Voltage, CV) 제어를 수행하여 92.5%의 고효율 획득 및 성능을 검증한다.

LLC 공진형 컨버터를 적용한 전기자동차 고압배터리 충전기 개발 (Development of Battery Charger for Electric Vehicle using the LLC Resonant Converter)

  • 김경만;유종욱;김태권;강찬호;전태원
    • 전력전자학회논문지
    • /
    • 제18권5호
    • /
    • pp.443-447
    • /
    • 2013
  • This paper deals with LLC resonant converter of on-board charger for electric vehicle charging. Generally, the on-board charger must have a very widely charging voltage, higher efficiency, higher power factor, lower volume and lower weight. For reducing the switching losses, voltage and current stress of the device, the on-board charger is apply the half-bridge LLC resonant converter topology. To have a wide voltage range, it is design the hardware parameters and determine the switching frequency range of the LLC resonant converter. The experimental results show a wide charge voltage.

자기적으로 결합된 PCB권선을 이용한 무접점 배터리 충전기 (A New Contactless Battery Charger Using Coupled Printed Circuit Board Windings)

  • 노재현;차헌녕;최병조;안태영
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권1호
    • /
    • pp.16-22
    • /
    • 2002
  • The Proposed contactless charger employs a Pair of neighboring Printed circuit board (PCB) windings as a contactless energy transfer device, thereby making it amenable to low-Profile designs and suitable for applications to the portable telecommunication/computing electroncis in which stringent requirements for height, space, and reliability have to be met. The performance of the proposed charger is confirmed with experiments on a prototype charger developed for cellular phones

SiC-MOSFET 기반 11-kW급 양방향 탑재형 충전기 성능 (Performance of an SiC-MOSFET Based 11-kW Bi-directional On-board Charger)

  • 이상연;이우석;이준영;이일운
    • 전력전자학회논문지
    • /
    • 제26권5호
    • /
    • pp.376-379
    • /
    • 2021
  • The design and performance of a SiC-MOSFET-based 11-kW bi-directional on-board charger (OBC) for electric vehicles is presented. The OBC consists of a three-phase two-level AC/DC converter and a CLLLC resonant converter. All the power devices are implemented with SiC-MOSFETs to reduce the conduction losses generated in the OBC, and the DC-link voltage is designed to track the level of battery voltage in the forward and reverse powering modes. As a result, the CLLLC resonant converter always runs at the switching frequency near the resonant frequency, resulting in high-efficiency operation at the maximum powering modes. As the DC-link voltage varies according to the battery voltage, the AC/DC converter in the proposed OBC adopts an adaptive DC-link voltage controller. The performance of the proposed 11-kW OBC is verified by a prototype converter with the following specifications: three-phase 60-Hz 380-V input, 11-kW capacity, and battery voltage range of 214-413-V, resulting in the conversion efficiency of over 95.0-% in the forward and reverse powering modes.