• Title/Summary/Keyword: On-board Orbit Propagator

Search Result 9, Processing Time 0.025 seconds

A Study on Autonomous Update of Onboard Orbit Propagator (위성 탑재용 궤도전파기의 자동 갱신에 관한 연구)

  • Jeong,Ok-Cheol;No,Tae-Su;Lee,Sang-Ryul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.10
    • /
    • pp.51-59
    • /
    • 2003
  • A method of autonomous update is presented for onboard orbit propagator. On board propagator is an alternative means that could be used for navigation purpose in case of CPS receiver's failure. Although the ground station is not a able to upload a new propagator, the onboard propagator must be maintained most up-to-date. For this, a filtering technique is proposed wherein GPS data are effectively used to continuously update the on board propagator which was uploaded previously. Even if the ground station has generated the on board propagator based on the wrong information, the onboard propagator with updating scheme can automatically correct the errors in the coefficients of residual reconstruction function. Several scenarios were used to show the validity of the scheme for updating the onboard propagator using KOMPSAT-1 orbit data.

Performance Improvement of Real Time On-board Orbit Determination using High Precision Orbit Propagator (고정밀 섭동모델을 이용한 실시간 On-board 궤도 결정 성능 향상)

  • Kim, Eun-Hyouek;Lee, Byung-Hoon;Park, Sung-Baek;Jin, Hyeun-Pil;Lee, Hyun-Woo;Jeong, Yun-Hwang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.9
    • /
    • pp.781-788
    • /
    • 2016
  • In this paper, a real-time on-board orbit determination algorithm using the high precise orbit propagator is suggested and its performance is analyzed. Orbit determination algorithm is designed with the Extended Kalman Filter. And it utilizes the orbit calculated from the Pseudo-range as observed data. The performance of the on-board orbit determination method implemented in the GPS-12 receiver is demonstrated using the GNSS simulator. Orbit determination performance using high precise orbit propagator was analyzed in comparison to the orbit determination result using $J_2$ orbit propagator. The analysis result showed that position and velocity error are improved from 43.61 m($3{\sigma}$) to 23.86 m($3{\sigma}$) and from 0.159 m/s($3{\sigma}$) to 0.044 m/s($3{\sigma}$) respectively.

On-Board Orbit Propagator and Orbit Data Compression for Lunar Explorer using B-spline

  • Lee, Junghyun;Choi, Sujin;Ko, Kwanghee
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.240-252
    • /
    • 2016
  • In this paper, an on-board orbit propagator and compressing trajectory method based on B-spline for a lunar explorer are proposed. An explorer should recognize its own orbit for a successful mission operation. Generally, orbit determination is periodically performed at the ground station, and the computed orbit information is subsequently uploaded to the explorer, which would generate a heavy workload for the ground station and the explorer. A high-performance computer at the ground station is employed to determine the orbit required for the explorer in the parking orbit of Earth. The method not only reduces the workload of the ground station and the explorer, but also increases the orbital prediction accuracy. Then, the data was compressed into coefficients within a given tolerance using B-spline. The compressed data is then transmitted to the explorer efficiently. The data compression is maximized using the proposed methods. The methods are compared with a fifth order polynomial regression method. The results show that the proposed method has the potential for expansion to various deep space probes.

GPS receiver and orbit determination system on-board VSOP satellite

  • Nishimura, Toshimitsu;Harigae, Masatoshi;Maeda, Hiroaki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1649-1654
    • /
    • 1991
  • In 1995 the VSOP satellite, which is called MUSES-B in Japan, will be launched under the VLBI Space Observatory Programme(VSOP) promoted by ISAS(Institute of Space and Astronautical Science) of Japan. We are now developing the GPS Receiver(GPSR) and On-board Orbit Determination System. This paper describes the GPS(Global Positioning System), VSOP, GPSR(GPS Receiver system) configuration and the results of the GPS system analysis. The GPSR consists of three GPS antennas and 5 channel receiver package. In the receiver package, there are two 16 bits microprocessing units. The power consumption is 25 Watts in average and the weight is 8.5 kg. Three GPS antennas on board enable GPSR to receive GPS signals from any NAVSTARs(GPS satellites) which are visible. NAVSATR's visibility is described as follows. The VSOP satellite flies from 1, 000 km to 20, 000 km in height on the elliptical orbit around the earth. On the other hand, the orbit of NAVSTARs are nearly circular and about 20, 000 km in height. GPSR can't receive the GPS signals near the apogee, because NAVSTARs transmit the GPS signals through the NAVSTAR's narrow beam antennas directed toward the earth. However near the perigee, GPSR can receive from 12 to 15 GPS signals. More than 4 GPS signals can be received for 40 minutes, which are related to GDOP(Geometric Dillusion Of Precision of selected NAVSTARs). Because there are a lot of visible NAVSTARs, GDOP is small near the perigee. This is a favorqble condition for GPSR. Orbit determination system onboard VSOP satellite consists of a Kalman filter and a precise orbit propagator. Near the perigee, the Kalman filter can eliminate the orbit propagation error using the observed data by GPSR. Except a perigee, precise onboard orbit propagator propagates the orbit, taking into account accelerations such as gravities of the earth, the sun, the moon, and other acceleration caused by the solar pressure. But there remain some amount of calculation and integration errors. When VSOP satellite returns to the perigee, the Kalman filter eliminates the error of the orbit determined by the propagator. After the error is eliminated, VSOP satellite flies out towards an apogee again. The analysis of the orbit determination is performed by the covariance analysis method. Number of the states of the onboard filter is 8. As for a true model, we assume that it is based on the actual error dynamics that include the Selective Availability of GPS called 'SA', having 17 states. Analytical results for position and velocity are tabulated and illustrated, in the sequel. These show that the position and the velocity error are about 40 m and 0.008 m/sec at the perigee, and are about 110 m and 0.012 m/sec at the apogee, respectively.

  • PDF

Real Time On-board Orbit Determination Performance Analysis of Low Earth Orbit Satellites (저궤도 위성의 실시간 On-board 궤도 결정 성능 분석)

  • Kim, Eun-Hyouek;Koh, Dong-Wook;Chung, Young-Suk;Park, Sung-Baek;Jin, Hyeun-Pil;Lee, Hyun-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.1
    • /
    • pp.79-87
    • /
    • 2015
  • In this paper, a real time on-board orbit determination method using the extended kalman filter is suggested and its performance is analyzed in the environment of the orbit. Considering the limited on-board resources, the $J_2$ orbit propagate model and the GPS navigation solution are used for on-board orbit determination. The analysis result of the on-board orbit determination method implemented in DubaiSat-2 showed that position and velocity error are improved from 70.26 m to 26.25 m and from 3.6 m/s to 0.044 m/s, respectively when abnormal excursion errors is removed in the GPS navigation solution.

On-board Realtime Orbit Parameter Generator for Geostationary Satellite (정지궤도위성 탑재용 실시간 궤도요소 생성기)

  • Park, Bong-Kyu;Yang, Koon-Ho
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.61-67
    • /
    • 2009
  • This paper proposes an on-board orbit data generation algorithm for geostationary satellites. The concept of the proposed algorithm is as follows. From the ground, the position and velocity deviations with respect to the assumed reference orbit are computed for 48 hours of time duration in 30 minutes interval, and the generated data are up-loaded to the satellite to be stored. From the table, three nearest data sets are selected to compute position and velocity deviation for asked epoch time by applying $2^{nd}$ order polynomial interpolation. The computed position and velocity deviation data are added to reference orbit to recover absolute orbit information. Here, the reference orbit is selected to be ideal geostationary orbit with a zero inclination and zero eccentricity. Thanks to very low computational burden, this algorithm allows us to generate orbit data at 1Hz or even higher. In order to support 48 hours autonomy, maximum 3K byte memory is required as orbit data storage. It is estimated that this additional memory requirement is acceptable for geostationary satellite application.

  • PDF

Development of Onboard Orbit Generation Algorithm for GEO Satellite (정지궤도 위성의 탑재 궤도 생성 알고리듬 개발)

  • Yim, Jo Ryeong;Park, Bong-Kyu;Park, Young-Woong;Choi, Hong-Taek
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.7-17
    • /
    • 2014
  • This technical paper deals with development of on-board orbit generation algorithm for GEO Satellite. This paper presents the research analysis results performed in order to improve the accuracy of the existing algorithm used for generating real-time orbit information for GEO satellite. The error impact on orbit accuracy due to the orbit error sources were analyzed with the algorithm suggested by this research. As a result of the analyses, it is found that the initial orbit should be determined with an accuracy of less than 50 m and the reference position angle error for the ground station and the satellite should be maintained within ${\pm}0.0025deg$ in order to meet the orbit accuracy specification. The development of on-board flight software based on the new algorithm was accomplished and the performance verification is ongoing by using a software based performance verification tool.

Analysis on Frozen & Sun-synchronous Orbit Conditions at the Moon

  • Song, Young-Joo;Park, Sang-Young;Kim, Hae-Dong;Lee, Joo-Hee;Sim, Eun-Sup
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.24.4-24.4
    • /
    • 2011
  • Frozen orbit concept is very useful in designing particular mission orbits including the Sun-synchronous and minimum altitude variation orbits. In this work, variety of frozen and Sun-synchronous orbit conditions around the Moon is investigated and analyzed. The first two zonal harmonics of the Moon, J2 and J3, are considered to determine mean orbital elements to be a frozen orbit. To check the long-term behavior of a frozen orbit, formerly developed YonSei Precise Lunar Orbit Propagator (YSPLOP) is used. First, frozen orbit solutions without conditions to be the Sun-synchronous orbit is investigated. Various mean semi-major axes having between ranges from 1,788 km to 1,938 km with inclinations from 30 deg to 150 deg are considered. It is found that a polar orbit (90 deg of inclination) having 100 km of altitude requires the orbital eccentricity of about 0.01975 for a frozen orbit. Also, mean apolune and perilune altitudes for this case is about 136.301 km and 63.694 km, respectively. Second, frozen orbit solutions with additional condition to be the Sun-synchronous orbit is investigated. It is discovered that orbital inclinations are increased from 138.223 deg to 171.553 deg when mean altitude ranged from 50 km to 200 km. For the most usual mission altitude at the Moon (100 km), the Sun-synchronous orbit condition is satisfied with the eccentricity of 0.01124 and 145.235 deg of inclination. For this case, mean apolune and perilune altitudes are found to be about 120.677 km and 79.323 km, respectively. The results analyzed in this work could be useful to design a preliminary mapping orbit as well as to estimate basic on-board payloads' system requirements, for a future Korea's lunar orbiter mission. Other detailed perturbative effects should be considered in the further study, to analyze more accurate frozen orbit conditions at the Moon.

  • PDF

Simulation of Spacecraft Attitude Measurement Data by Modeling Physical Characteristics of Dynamics and Sensors

  • Lee, Hun-Gu;Yoon, Jae-Cheol;Cheon, Yee-Jin;Shin, Dong-Seok;Lee, Hyun-Jae;Lee, Young-Ran;Bang, Hyo-Choong;Lee, Sang-Ryool
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1966-1971
    • /
    • 2004
  • As the remote sensing satellite technology grows, the acquisition of accurate attitude and position information of the satellite has become more and more important. Due to the data processing limitation of the on-board orbit propagator and attitude determination algorithm, it is required to develop much more accurate orbit and attitude determination, which are so called POD (precision orbit determination) and PAD (precision attitude determination) techniques. The sensor and attitude dynamics simulation takes a great part in developing a PAD algorithm for two reasons: 1. when a PAD algorithm is developed before the launch, realistic sensor data are not available, and 2. reference attitude data are necessary for the performance verification of a PAD algorithm. A realistic attitude dynamics and sensor (IRU and star tracker) outputs simulation considering their physical characteristics are presented in this paper, which is planned to be used for a PAD algorithm development, test and performance verification.

  • PDF