• Title/Summary/Keyword: On-Line Electric Vehicle

Search Result 93, Processing Time 0.041 seconds

Interior Noise Characteristics of the Electric Trains in Gyeongchun Line (경춘선 전동열차의 실내 소음 특성)

  • Ann, Yong Chan;Lee, Jung Hyeok;Kim, Seock Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.817-822
    • /
    • 2014
  • Since the opening of the double-track railway for the Gyeongchun local electric train and the semi-high speed train ITX, floating population between Seoul and Chuncheon has rapidly increased. This is attributable to the competitiveness of the railway service in terms of punctuality and safety of operation, mass transportation and low fare. However, many passengers have expressed strong dissatisfaction and displeasure towards the interior noise and its high rate of increase, particularly in tunnel sections. In this study, the interior noise characteristics of Gyeongchun local electric train and ITX were analyzed and compared. Noise levels, frequency spectrum and sound quality indices were compared for the open land, tunnel and bridge. Finally, from the noise levels depending on the location in the vehicle compartment, the noise transmission path was determined and a basic strategy for reducing the interior noise was developed.

Analysis and improvement of transfer power capability considering movable load charging of EV (전기자동차 충전부하의 이동성을 고려한 전송 전력량의 해석 및 개선)

  • Kim, Deok Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.762-767
    • /
    • 2017
  • This paper presents an analysis for improving the power transfer capability in transmission lines caused by the movable load charging of electric vehicles (EVs). EVs are expected to be used more widely and replace gas fuel vehicles in the near future due to the shortage of fossil fuels and for environmental preservation. Movable load charging of EVs could lead to the convergence of transferred power flow and overloading conditions in transmission lines in a specific area of a power system, which is conventionally based on estimated fixed load capability. To analyze these conditions, the New England Test System was divided into four regions based on the load characteristics, and different charging scenarios were considered. In these scenarios, the regional power load was highly increased to 31% based on the standard charging capacity of an EV. As a solution to the overloading problem of transmission lines, a TCSC was installed serially on the overloaded line to directly control the transferred power under limited line capability (100% load capability). The simulation showed that the application of a few TCSCs could efficiently and economically control the line capability problem caused by movable load charging of EVs.

A study on Protection Coordination Method for Electric Vehicle Charging Facility based on the Wireless Power Transmission (무선전력전송 전기충전설비용 전원공급장치의 최적운용방안에 관한 연구)

  • Ryu, Kyung-Sang;Kim, Byungki;Kim, Dae-Jin;Jang, Moon-Seok;Rho, Daeseok;Ko, Hee-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.42-51
    • /
    • 2017
  • This paper deals with the power supply facility providing wireless power transmission for a type of electric vehicles called the on-line electric vehicle(OLEV) and proposes optimal protection coordination methods which analyze the faultsin the 60Hz and 20kHz bands using PSCAD/EMTDC, which is the typical commercial software for the distribution system. The simulation results show that the proposed methods can reduce the fault current by introducing an NGR (Neutral Ground Resistor) in the 60Hz band and prevent the malfunctioning of the protection device by installing a CT in the neutral wire in the 20kHz band when a ground fault occurs.

Current Status of Standardization for Quality Control of Hydrogen Fuel in Hydrogen Refueling Stations for Fuel Cell Electric Vehicles (수소충전소 내 연료전지용 수소연료 품질 관리 및 표준화 동향)

  • KIM, DONGKYUM;LIM, JEONG SIK;LEE, JEONGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.284-292
    • /
    • 2022
  • Hydrogen is promising a candidate for energy supporting the carbon neutrality policy for greenhouse gas reduction, which is being promoted in several countries, including Korea. Although challenging efforts-such as lowering the costs of green hydrogen production and fuel cells-remain, hydrogen fuel cell electric vehicles (FCEVs) are expected to play a significant role in the energy transition from fossil fuels to renewable energy. In line with this objective, the hydrogen FCEV working group in the International Organization for Standardization (ISO) compiled and revised international standards related to hydrogen refueling stations as of 2019. A well-established hydrogen quality management system based on the standard documents will increase the reliability of hydrogen charging stations and accelerate the use of FCEVs. In this study, among the published ISO standards and other references, the main requirements for managing charging stations and developing related techniques were summarized and explained. To respond preemptively to the growing FCEV market, a continuous hydrogen quality monitoring method suitable for use at hydrogen charging stations was proposed.

Study of aerodynamic characteristic for a device controlling lift force on pantograph for Tilting train eXpress (TTX) (고속 틸팅열차의 판토그라프 양력조절장치 형상 설계 연구)

  • Ko Taehwan;Han Seong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.467-471
    • /
    • 2004
  • The development of a tilting train with construction of electric line on the conventional railway is required for speed-up on the conventional railway with many curving sections. For development of tilting train, the study and development of the tilting system and tilting bogie having the different mechanism with a general high speed train will play a main role for improving the technology in the field of Korean railway. The study and development of the pantograph tilting mechanism in order to keep a good contact behavior between a pantograph and a contact wire by tilting a pantograph on the opposite direction of the vehicle tilting direction. In this study, we analyzed the aerodynamic characteristic of a developing pantograph on the tilting train and obtained the contact force with catenary by aerodynamic lift force by the aerodynamic analysis. We also performed the numerical analysis for design the device controlling lift force on a pantograph. From the aerodynamic simulation and parameter study for a device to control the lift force, we will suggest the various shape and the optimal shape of it corresponding to a developing tilting pantograph. The Fluent software is used for the calculation of flow profile in this study.

  • PDF

Study of aerodynamic characteristic for a pantograph for Tilting train eXpress (TTX) (고속 틸팅열차의 틸팅 판토그라프 공력 특성 연구)

  • Ko T. H.;Kim G. N.;Goo D. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.177-180
    • /
    • 2004
  • The development of a tilting train with construction of electric line on the conventional railway is required for speed-up on the conventional railway with many curving sections. For development of tilting train, the study and development of the tilting system and tilting bogie having the different mechanism with a general high speed train will play a main role for improving the technology in the field of Korean railway The study and development of the pantograph tilting mechanism in order to keep a good contact behavior between a pantograph and a contact wire by tilting a pantograph on the opposite direction of the vehicle tilting direction. In this study, we analyzed the aerodynamic characteristic of a developing pantograph on the tilting train and obtained the contact force with catenary by aerodynamic lift force by the aerodynamic analysis. We also performed the numerical analysis for design the device controlling lift force on a pantograph. From the aerodynamic simulation and parameter study for a device to control the lift force, we will suggest the various shape and the optimal shape of it corresponding to a developing tilting pantograph. The Fluent software is used for the calculation of flow profile in this study.

  • PDF

Analysis of braking characteristics of electric multiple unit for train control system (열차제어시스템을 위한 전동차 제동특성 분석)

  • Choi, Don Bum;Oh, Sehchan;Kim, Min-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.887-895
    • /
    • 2018
  • This paper presents a braking model that can be used to design the safety distance of a train control system and a train braking system to increase the volume of traffic. For the braking model, a train set (electric multiple unit composed 6 cars) was tested. The factors that can affect the braking characteristics include the friction coefficient, braking pressure, and regenerative braking. The braking pressure was classified into service and emergency braking and reflected the characteristics of the vehicle. The external force acting on the running railway car was tested in accordance with KS R 9217, and the running resistance of the train is presented in the form of a polynomial. The dynamic behavior of the train running on a straight flat line was simulated using UM 8.3. The results were validated with experimental data, and the results were reasonable. With the validated model, a stopping distance was determined according to the initial braking speed and compared with the deceleration braking model. In addition, a safety distance for the train control system could be changed according to the frictional coefficient limits. These results are expected to be useful for analyzing the dynamic behavior of trains, and for analyzing various railway environments and improving the braking performance.

Structural Behavior of Mixed $LiMn_2O_4-LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ Cathode in Li-ion Cells during Electrochemical Cycling

  • Yun, Won-Seop;Lee, Sang-U
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.5-5
    • /
    • 2011
  • The research and development of hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) are intensified due to the energy crisis and environmental concerns. In order to meet the challenging requirements of powering HEV, PHEV and EV, the current lithium battery technology needs to be significantly improved in terms of the cost, safety, power and energy density, as well as the calendar and cycle life. One new technology being developed is the utilization of composite cathode by mixing two different types of insertion compounds [e.g., spinel $LiMn_2O_4$ and layered $LiMO_2$ (M=Ni, Co, and Mn)]. Recently, some studies on mixing two different types of cathode materials to make a composite cathode have been reported, which were aimed at reducing cost and improving self-discharge. Numata et al. reported that when stored in a sealed can together with electrolyte at $80^{\circ}C$ for 10 days, the concentrations of both HF and $Mn^{2+}$ were lower in the can containing $LiMn_2O_4$ blended with $LiNi_{0.8}Co_{0.2}O_2$ than that containing $LiMn_2O_4$ only. That reports clearly showed that this blending technique can prevent the decline in capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and related structural phase transitions for these composite cathodes. In this presentation, we will report our in situ x-ray diffraction studies on this mixed composite cathode material during charge-discharge cycling. The mixed cathodes were incorporated into in situ XRD cells with a Li foil anode, a Celgard separator, and a 1M $LiPF_6$ electrolyte in a 1 : 1 EC : DMC solvent (LP 30 from EM Industries, Inc.). For in situ XRD cell, Mylar windows were used as has been described in detail elsewhere. All of these in situ XRD spectra were collected on beam line X18A at National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory using two different detectors. One is a conventional scintillation detector with data collection at 0.02 degree in two theta angle for each step. The other is a wide angle position sensitive detector (PSD). The wavelengths used were 1.1950 ${\AA}$ for the scintillation detector and 0.9999 A for the PSD. The newly installed PSD at beam line X18A of NSLS can collect XRD patterns as short as a few minutes covering $90^{\circ}$ of two theta angles simultaneously with good signal to noise ratio. It significantly reduced the data collection time for each scan, giving us a great advantage in studying the phase transition in real time. The two theta angles of all the XRD spectra presented in this paper have been recalculated and converted to corresponding angles for ${\lambda}=1.54\;{\AA}$, which is the wavelength of conventional x-ray tube source with Cu-$k{\alpha}$ radiation, for easy comparison with data in other literatures. The structural changes of the composite cathode made by mixing spinel $LiMn_2O_4$ and layered $Li-Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ in 1 : 1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to ~5.2 V vs. $Li/Li^+$, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component only. When the cell voltage reaches at ~4.0 V vs. $Li/Li^+$, lithium extraction from the spinel $LiMn_2O_4$ component starts and becomes the major contributor for the cell capacity due to the higher rate capability of $LiMn_2O_4$. When the voltage passed 4.3 V, the major structural changes are from the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, while the $LiMn_2O_4$ component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel $LiMn_2O_4$ component, with much less changes in the layered $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research. More detailed discussion will be presented at the meeting.

  • PDF

Study on the characteristic estimation of Permanent Magnet Synchronous Motor for On-Line Electric Vehicle considering field weakening region (약계자 영역을 고려한 온라인 전기버스용 영구자석 전동기의 특성산정 연구)

  • Son, Rak-Won;Lee, Jong-In;Kim, Wan-Gi;Kim, Keun-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.798-799
    • /
    • 2011
  • 온라인 전기버스용 전동기는 차량의 운전특성을 고려하여 가속성 향상을 위한 높은 기동토크가 요구되며, 넓은 속도영역 운전을 위한 약계자 제어성능이 우수해야 한다. 특히 전동기의 최대 동작속도가 배터리 전압에 의해 결정되므로, 고속 운전영역 확보를 위해 전압제한을 고려한 전기설계가 필요하다. 본 연구에서는 정격속도 대비 최대속도의 비가 1:4로서 넓은 약계자 영역이 요구되는 온라인 전기버스용 전동기에 대해 개념설계를 진행하여 Active Part의 치수를 산출하고, 고정자 권선의 턴수 및 회전자 형상 변화에 따른 전압 및 출력특성을 비교 분석하여, 온라인 전기버스용 전동기에 요구되는 약계자 제어특성을 만족하도록 설계안을 도출하였다. 또한 전동기의 고속 동작시 주 손실인 철손에 의한 온도상승을 고려하여 영구자석의 감자안정성을 분석하였으며, 전자장 FEM 해석을 적용하여 설계결과의 타당성을 검증하였다.

  • PDF

A Study on the Uplift for Applying of Heavy Simple Catenary System in a Overhead Rigid Conductor Rail Transition Section (강체전차선로 이행구간 Heavy Simple Catenary 적용을 위한 압상량 고찰)

  • Kim, Wan-il;Park, Weon-Chan;Lee, Jae-Bong;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.5
    • /
    • pp.688-694
    • /
    • 2018
  • The transition section of the overhead rigid conductor rail (ORCR) consists of a direct induction device and a limit point to prevent the power supply failure and failure of the electric railway vehicle pantograph due to the difference of the uplift in the catenary line. In T-Bar transition section, a twin simple catenary is mostly installed between the overhead catenary system (OCS) in the ground section and the ORCR in the underground section. In this paper, we compare and analyze the possibility of replacing the twin simple catenary with heavy simple catenary. The reliability of numerical analysis results was confirmed by comparing field test with numerical results. Comparing the numerical results of the twin simple catenary with the heavy simple catenary in the transition section, the difference uplift is 5.9[mm] on average. When applying heavy simple catenary instead of twin simple catenary, the slight difference of uplift can be compensated by adjusting the height of hanger-ear or support bracket.