• 제목/요약/키워드: On-Line Electric Vehicle

검색결과 96건 처리시간 0.028초

Wireless Power Transfer Technology in On-Line Electric Vehicle

  • Ahn, Seung-Young;Chun, Yang-Bae;Cho, Dong-Ho;Kim, Joung-Ho
    • Journal of electromagnetic engineering and science
    • /
    • 제11권3호
    • /
    • pp.174-182
    • /
    • 2011
  • The On-line Electric Vehicle (OLEV) is an electric transport system in which the vehicle's power is transferred wirelessly from power lines underneath the surface of the road. Advantages of the OLEV include reducing battery size and cost to about 20 percent of that of conventional battery-powered electric vehicles, thereby minimizing the vehicle's weight and price, as well as the cost of charging the system. In this paper, we introduce a wireless power transfer mechanism to maximize the electrical performance of the power transfer system. Power transfer capacity, power transfer efficiency, and magnitude of leakage in the electromagnetic field (EMF) are analyzed, and the optimization methodology of the design parameters is discussed.

회로 차단기 절연파괴로 인한 직류 전기철도 화재 사고사례 분석 (Analysis of Fire Accident on DC Electric Traction Vehicles Caused by Breakdown in the Line Breaker)

  • 박남규;송재용;고재모;김진표;남정우
    • 한국안전학회지
    • /
    • 제32권6호
    • /
    • pp.16-21
    • /
    • 2017
  • Fire or electrical problem while DC electric traction vehicle operation caused by various reasons can lead to not only suspension of the operation, but also severe aftermath such as massive casualty. In this paper, fire analysis on DC electric traction vehicle caused by electrical breakdown on line breaker, which is in connection with the power supply, is presented. When the electric arc, the by-product of frequent line breaker operation, is not fully diminished, it leads to electrical breakdown and fire. Especially, electrical breakdown can be easily induced by the open-and-close operation of inner contractor inside line breaker, eventually followed by ground fault and generation of transient current. Electric arc is consequent on the ground fault and acts as possible ignition source, leading to fire. Also, during the repetitive operation of the line breaker, the contactor is separated each other and some copper powder is generated, and the copper powder provided breakdown path, resulting in fire.

전륜 인라인 후륜 인휠 모터 적용 전기자동차의 최적 동력 분배 (Optimal Power Distribution for an Electric Vehicle with Front In-line Rear In-wheel Motors)

  • 김정민
    • 한국자동차공학회논문집
    • /
    • 제22권2호
    • /
    • pp.76-82
    • /
    • 2014
  • In this paper, an optimal power distribution algorithm is proposed for the small electric vehicle with front in-line and rear in-wheel motors. First, it is assumed that the vehicle driving torque and velocity are given conditions. And, an optimal problem is defined that finding the front and rear motor torques which minimizes the battery power. From the above optimization problem, the optimized front-rear motor torque distribution map is obtained. And, the vehicle simulations are performed to verify the performance of the optimal power distribution algorithm which is proposed in this study. The simulations are performed based on the federal urban driving schedule for two cases which are constant ratio power distribution, and optimal power distribution. From the simulation results, it is found that the optimal power distribution shows the 6.3% smaller battery energy consumption than the constant ratio power distribution.

On-Line Electric Vehicle의 EMF 저감을 위한 FCCL 차폐효과 분석 (An Analysis of FCCL Shielding Effect for EMF Attenuation to On-Line Electric Vehicle)

  • 심형욱;김종우;조동호
    • 전기학회논문지
    • /
    • 제63권6호
    • /
    • pp.770-775
    • /
    • 2014
  • According to ICNIRP guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields up to 300GHz, magnetic flux density which range from 3Hz to 150kHz are regulated to lower than $6.25{\mu}T$. In order to comply with its standard, OLEV(On-Line Electric Vehicle) have been designed considering EMF(Electro-Magnetic Field) reduction. However, if a current flowing in power line would be bigger for increasing power transfer efficiency, the established shield system no longer acts their role properly. In this paper, therefore, FCCL(Flexible Copper Clad Laminate) is applied to power line and pick-up devices to solve the problems. Though, the FCCL is normally utilized to insulator on circuit board, because of its high heat resistance characteristic, flexibility and thin properties, it makes effectiveness in the shielding device as well. 4 types of FCCL shielding structure are introduced to power line and pick-up devices. From the results, the FCCL which are placed in proposed positions shows maximum EMF reduction compared to the established shielding structure. Henceforth, if OLEV is applied FCCL shielding structure in practice, it will not only be more safe but also step forward to commercialization near future.

4호선 전동차 판토그라프 주습판 마모현상에 관한 연구 (A Study on the Wearing Phenomenon of Pantograph Slider for the SEOUL METRO Line 4 Rail Vehicles)

  • 김영규;양용준
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.51-56
    • /
    • 2007
  • Pantograph of the electric train is the important part receiving current by adhereing contact wire. Wearing rate of pantograph or contact wire is changed by the type of pantograph and material of adhering part. In special, the weather influences the relative wearing rate and wearing type of pantograph Slider and Contact wire with steep wearing in arc and life cycle of pantograph slider. Presently, the weather causes side-wearing and over-wearing of pantograph slide installed in electric train. So it is difficult to manage and operate the electric train. Although the quality of slide using in line4 vehicle was finished the test in line 2 vehicle experimentally, it has to apply after pantograph is installed in some electric trains and check the influence in it and contact wire. It is because line4 section is very different from line2 section. Experimental application is the sequence to certify the safety and abrasion resistance importantly by enlarging experimental application with increase of the experimental electric train. The lenth of line4 in Seoul Metro is 71.5[km]. It is long section. The line is mixed DC 1,500[V] section and AC 25,000[V] section. It has underground section of 41.5[km] and ground section of 30[km]. Ground section is about 42% and receives much influence in the rain during the rainy season. After experimental application we found that this pantograph slide has twice as much abrasion resistance despite a little deviation and found the occurrence probability of arc and side-wearing is decreased considerably.

  • PDF

Sensorless Fuzzy Direct Torque Control for High Performance Electric Vehicle with Four In-Wheel Motors

  • Sekour, M'hamed;Hartani, Kada;Draou, Azeddine;Allali, Ahmed
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권3호
    • /
    • pp.530-543
    • /
    • 2013
  • This paper describes a control scheme of speed sensorless fuzzy direct torque control (FDTC) of permanent magnet synchronous motor for electric vehicle (EV). Electric vehicle requires fast torque response and high efficiency of the drive. Speed sensorless FDTC In-wheel PMSM drives without mechanical speed sensors at the motor shaft have the attractions of low cost, quick response and high reliability in electric vehicle application. This paper presents a new approach to estimate the speed of in-wheel electrical vehicles based on Model Reference Adaptive System (MRAS). The direct torque control suffers in low speeds due to the effect of changes in stator resistance on the flux measurements. To improve the system performance at low speeds, a PI-fuzzy resistance estimator is proposed to eliminate the error due to changes in stator resistance. High performance sensorless drive of the in-wheel motor based on MRAS with on line stator resistance tuning is established for four motorized wheels electric vehicle and the whole system is simulated by matalb/simulink. The simulation results show the effectiveness of the new control strategy. This proposed control strategy is extensively used in electric vehicle application.

전기철도 전원계통에서의 화재사고 사례 분석 (Analysis of Fire Accident on Power Line for DC Electric Traction Vehicles)

  • 송재용;조영진;남정우;김진표;박남규
    • 한국안전학회지
    • /
    • 제25권2호
    • /
    • pp.18-23
    • /
    • 2010
  • This paper describes a cause of fire accidents on power system fire DC electric traction vehicles. We investigated fire scene of power line for DC electric traction vehicles. From analysis results, the cause of fire on power line turned out line to ground fault between a feeder of electric power services(pantagraph) and DC electric traction vehicle roof. Fire accident of DC electric traction vehicles be assumed that electric sparks had been produced between the pantagraph and the power line conductor by repetitively making contact and separation, maybe if some material like branches get in between connecting rod it makes progress line to ground fault. ZnO arresters are widely used to protect DC electric traction vehicles against overvoltages caused by lightning or switching surges. However, the arresters are deteriorated by commercial overvoltages and/or lightning one. The deteriorated arresters could lead power failures, such as line to ground fault by a thermal runaway resulting from the increases in leakage current even in a nominal power system voltage. Finally, the power failures would be causative of the fire accident.

ABS 모듈의 접속부 및 전원배선 손상으로 인한 차량화재 사고사례 분석 (Analysis on the Fire Accident of Vehicle Due to Damage of Connector and wiring on an Anti-lock Brake System(ABS) Module)

  • 박남규;김진표;남정우;박종택;송재용
    • 한국안전학회지
    • /
    • 제32권5호
    • /
    • pp.13-19
    • /
    • 2017
  • In this paper, study of vehicle fire cases caused by connector and power wiring of anti-lock brake system(ABS) module damage is presented. The purpose of ABS module is to improve braking and steering ability under sudden stop of the vehicle by repeatedly activating and releasing the brake with electric signal via electric control unit. The electric control unit for ABS may experience incomplete contact between power line and signal line or electrical breakdown on the printed circuit board by undergoing repetitive signal change which would consequently result in electrical heat and spark, eventually leading to automotive fire. Therefore, the purpose of this paper is to provide fundamental data by analyzing connector and power wiring of ABS module damage conducive to the precise investigation on the cause of vehicle fire.

전기철도 전원계통에서의 화재 사고사례 분석 (Analysis of Fire Accidents on Power Line for DC Electric Traction Vehicles)

  • 송재용;조영진;김진표;박남규;길경석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.241-247
    • /
    • 2008
  • This paper describes a cause of fire accidents on power system for DC electric traction vehicles. We investigated fire scene of power line for DC electric traction vehicles. From analysis results, the cause of fire on power line turned out line to ground fault between a feeder of electric power services(pantagraph) and DC electric traction vehicle roof. Fire accidents of DC electric traction vehicles be assumed that electric sparks had been produced between the pantagraph and the power line conductor by repetitively making contact and separation, maybe if some material like branches get in between connecting rod it make progress line to ground fault. ZnO arresters are widely used to protect DC electric traction vehicles against overvoltages caused by lightning or switching surges. However, the arresters are deteriorated by commercial frequency overvoltages and/or lightning one. Deteriorated arresters could lead power failures, such as line to ground fault by a thermal runaway resulting from the increases in leakage current even in a nominal power system voltage. The power failures, such as line to ground fault would be causative of the fire accidents.

  • PDF

Thermo-mechanical analysis of road structures used in the on-line electric vehicle system

  • Yang, B.J.;Na, S.;Jang, J.G.;Kim, H.K.;Lee, H.K.
    • Structural Engineering and Mechanics
    • /
    • 제53권3호
    • /
    • pp.519-536
    • /
    • 2015
  • On-line electric vehicle (OLEV) is a new eco-friendly transportation system that collects electricity from a power cable buried beneath the road surface, allowing the system to resolve various problems associated with batteries in electric vehicles. This paper presents a finite element (FE) based thermo-mechanical analysis of precast concrete structures that are utilized in the OLEV system. An experimental study is also conducted to identify materials used for a joint filler, and the observed experimental results are applied to the FE analysis. Traffic loading and boundary conditions are modeled in accordance with the related standards and environmental characteristics of a road system. A series of structural analyses concerning various test scenarios are conducted to investigate the sensitivity of design parameters and to evaluate the structural performance of the road system.