• Title/Summary/Keyword: On-Line Analytic Processing(OLAP)

Search Result 4, Processing Time 0.02 seconds

An Information System Architecture for Extracting Key Performance Indicators from PDM Databases (PDM 데이터베이스로부터 핵심성과지표를 추출하기 위한 정보 시스템 아키텍쳐)

  • Do, Namchul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • The current manufacturers have generated tremendous amount of digitized product data to efficiently share and exchange it with other stakeholders or various software systems for product development. The digitized product data is a valuable asset for manufacturers, and has a potential to support high level strategic decision makings needed at many stages in product development. However, the lack of studies on extraction of key performance indicators(KPIs) from product data management(PDM) databases has prohibited manufacturers to use the product data to support the decision makings. Therefore this paper examines a possibility of an architecture that supports KPIs for evaluation of product development performances, by applying multidimensional product data model and on-line analytic processing(OLAP) to operational databases of product data management. To validate the architecture, the paper provides a prototype product data management system and OLAP applications that implement the multidimensional product data model and analytic processing.

A Method for Engineering Change Analysis by Using OLAP (OLAP를 이용한 설계변경 분석 방법에 관한 연구)

  • Do, Namchul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.2
    • /
    • pp.103-110
    • /
    • 2014
  • Engineering changes are indispensable engineering and management activities for manufactures to develop competitive products and to maintain consistency of its product data. Analysis of engineering changes provides a core functionality to support decision makings for engineering change management. This study aims to develop a method for analysis of engineering changes based on On-Line Analytical Processing (OLAP), a proven database analysis technology that has been applied to various business areas. This approach automates data processing for engineering change analysis from product databases that follow an international standard for product data management (PDM), and enables analysts to analyze various aspects of engineering changes with its OLAP operations. The study consists of modeling a standard PDM database and a multidimensional data model for engineering change analysis, implementing the standard and multidimensional models with PDM and data cube systems and applying the implemented data cube to core functions of engineering change management, the evaluation and propagation of engineering changes.

H*-tree/H*-cubing-cubing: Improved Data Cube Structure and Cubing Method for OLAP on Data Stream (H*-tree/H*-cubing: 데이터 스트림의 OLAP를 위한 향상된 데이터 큐브 구조 및 큐빙 기법)

  • Chen, Xiangrui;Li, Yan;Lee, Dong-Wook;Kim, Gyoung-Bae;Bae, Hae-Young
    • The KIPS Transactions:PartD
    • /
    • v.16D no.4
    • /
    • pp.475-486
    • /
    • 2009
  • Data cube plays an important role in multi-dimensional, multi-level data analysis. Meeting on-line analysis requirements of data stream, several cube structures have been proposed for OLAP on data stream, such as stream cube, flowcube, S-cube. Since it is costly to construct data cube and execute ad-hoc OLAP queries, more research works should be done considering efficient data structure, query method and algorithms. Stream cube uses H-cubing to compute selected cuboids and store the computed cells in an H-tree, which form the cuboids along popular-path. However, the H-tree layoutis disorderly and H-cubing method relies too much on popular path.In this paper, first, we propose $H^*$-tree, an improved data structure, which makes the retrieval operation in tree structure more efficient. Second, we propose an improved cubing method, $H^*$-cubing, with respect to computing the cuboids that cannot be retrieved along popular-path when an ad-hoc OLAP query is executed. $H^*$-tree construction and $H^*$-cubing algorithms are given. Performance study turns out that during the construction step, $H^*$-tree outperforms H-tree with a more desirable trade-off between time and memory usage, and $H^*$-cubing is better adapted to ad-hoc OLAP querieswith respect to the factors such as time and memory space.

Modeling a Business Performance Information System with Knowledge Discovery in Databases (데이터베이스 지식발견체계에 기반한 경영성과 정보시스템의 구축)

  • Cho, Seong-Hoon;Chung, Min-Yong;Kim, Jong-Hwa
    • IE interfaces
    • /
    • v.14 no.2
    • /
    • pp.164-171
    • /
    • 2001
  • We suggest a Business Performance Information System with Knowledge Discovery in Databases(KDD) as a key component of integrated information and knowledge management system. The proposed system measures business performance by considering both VA(Value-Added), which represents stakeholder's point of view and EVA(Economic Value-Added), which represents shareholder's point of view. In modeling of Business Performance Information System, we apply the following KDD processes : Data Warehouse for consistent management of a performance data, On-Line Analytic Processing(OLAP) for multidimensional analysis, Genetic Algorithms for exploring and finding dominant managing factors and Analytic Hierarchy Process(AHP) for applying expert's knowledge and experience. To demonstrate the performance of the system, we conducted a case study using financial data of Korean automobile industry over 16 years from 1981 to 1996, which is taken from database of KISFAS(Korea Investors Services Financial Analysis System).

  • PDF