• Title/Summary/Keyword: On the Machine Measurement(OMM)

Search Result 54, Processing Time 0.033 seconds

A feature based Computer Aided Inspection Planning system (형상기반의 CAIP 시스템 개발)

  • 윤길상;조명우;이홍희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.353-358
    • /
    • 2002
  • A feature-based inspection planning system is proposed in this research to develop more efficient measuring methodology for the OMM (On-machine measurement) for complicated workpiece having many primitive form features. This paper focuses on the development of the CAIP (computer-aided inspection system) methodologies. The optimum inspection sequences for the features are determined by analyzing the feature information such as the nested relations and the possible probe approaching directions of the features, and forming feature groups. A series of heuristic rules are developed to accomplish it. Also, each feature is decomposed into its constituent geometric elements, and then the number of sampling points, the locations of the measuring point, the optimum probing path are determined by applying the fuzzy logic, Hammersley's method, and the TSP algorithm. To verify the proposed methodologies, simulations are carried out and the results are analyzed.

  • PDF

Development of Touch Probe Collision Avoidance Algorithm for OMM Using Offset Surface and Dynamic Error Compensation (OMM 에서 Offset Surface 를 이용한 접촉식 Probe 의 충돌회피 알고리즘 개발 및 동적 에러 보정)

  • 정석현;김동우;조명우;서태일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.323-326
    • /
    • 2004
  • In this study, the inspection path which is considered to free collision is generated by offset surface. When the inspection is executed, the consideration of machine dynamic error increases a precision. Dynamic error is measured on CNC machine bed changing of weight work price. Offset surface is safety space about collision. Because the danger of probe-collision is excluded in Offset surface, it is possible to rapid feed of probe and reduced inspection time. The Program which is possible to simulate using CAIP and is confirmed through actual experiment.

  • PDF

A Study of Feature-Based Computer-Aided Inspection Planning System (특징 형상기반의 CAIP에 관한 연구)

  • 윤길상;조명우;이홍희
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.15-23
    • /
    • 2003
  • A feature-based inspection planning system is proposed in this research to develop more efficient measuring methodology for the OMM(On-Machine Measurement) or CMM(coordinate Measuring Machine) for complicated workpiece having many primitive form features. This paper is proposed solution that optimum inspection sequence of the objective features. The sequences are determined by analyzing the feature information such as the nearest relationship and the possible probe-approach direction(PAD) of the features, and forming feature groups. A series of heuristic rules are developed to accomplish it. Also, each feature is decomposed into its constituent geometric elements for inspection process, and then the number of sampling points, location of the measuring points, optimum probing path are determined.

Development of OMM Module for PC-NC System (PC-NC 를 위한 기상측정 모듈 개발)

  • 윤길상;권양훈;정석우;조명우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.144-152
    • /
    • 2003
  • The purpose of this paper is to establish an effective inspection system by using OMM (On-Machine Measurement) system based PC-NC. This system can reduce manufacturing lead time because part is inspected each process. Inspection process planning is accomplished by determining the number of measuring points, their location, measuring path using fuzzy logic, Hammersley method, traveling salesperson problem. Inspection with contacted sensor improve quality as inspection feature is developed to based machining feature. This method is tested by simulation and experiment, then analyzed measuring data and geometry tolerance.

Fast Assessment of Machine Tool Errors Using a Touch Probe and Cube Array Artifact (터치프로브와 Cube Artifact를 이용한 공작기계 오차의 신속한 규명)

  • 최진필;이상조;권혁동
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.650-653
    • /
    • 2002
  • In this paper, a methodology to assess machine tool errors quickly is suggested using a touch probe and a cube array artifact. Parameterized error models derived are expressed of model coefficient vectors and backlash errors to be determined. To determine the unknown model coefficient vectors, a cube array artifact is proposed. Considering CMM measurement data of cube vertex coordinates. error vectors for all axes ate obtained and used to complete the error model. Some simulation results show that the suggested error model can follow the true values within 10$\mu\textrm{m}$. To verify the error model, a circular part with two concentric circles is measured and simulated. The results show that the differences between CMM and OMM radius errors are smaller than 15$\mu\textrm{m}$.

  • PDF

A Study of Machining Error Compensation Using PNN Approach (PNN을 이용한 가공오차 보상에 관한 연구)

  • Seo T.I.;Park D.S.;Hong Y.C.;Cho M.W.;Bae J.S.;Shin J.S.;Kim E.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.581-582
    • /
    • 2006
  • This paper presents an integrated machining error compensation method based on PNN(Polynomial Neural Network) approach and inspection database of OMM(On-Machine-Measurement) system. To efficiently analyze the machining errors, two machining error parameters are defined and modeled using the PNN approach, which is used to determine machining errors for the considered cutting conditions. Experiments are carried out to validate the approaches proposed in this paper. In result, the proposed methods can be effectively implemented in a real machining situation, producing much fewer errors.

  • PDF

A Computer-Aided Inspection Planning System for On-Machine Measurement - Part I : Global Inspection Planning -

  • Lee, Hong-Hee;Cho, Myeong-Woo;Yoon, Gil-Sang;Choi, Jin-Hwa
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1349-1357
    • /
    • 2004
  • Computer-Aided Inspection Planning (CAIP) is the integration bridge between CAD/CAM and Computer Aided Inspection (CAI). A CAIP system for On-Machine Measurement (OMM) is proposed to inspect the complicated mechanical parts efficiently during machining or after machining. The inspection planning consists of Global Inspection Planning (GIP) and Local Inspection Planning (LIP). In the GIP, the system creates the optimal inspection sequence of the features in a part by analyzing the various feature information such as the relationship of the features, Probe Approach Directions (PAD), etc. Feature groups are formed for effective planning, and special feature groups are determined for sequencing. The integrated process and inspection plan is generated based on the sequences of the feature groups and the features in a feature group. A series of heuristic rules are developed to accomplish it. In the LIP of Part II, the system generates inspection parameters. The integrated inspection planning is able to determine optimum manufacturing sequence for inspection and machining processes. Finally, the results are simulated and analyzed to verify the effectiveness of the proposed CAIP.

Development of integrated Rule-based CAPP system for Mold Manufacturing and Inspection (금형가공 및 측정을 위한 통합 Rule-based CAPP 시스템 개발)

  • 윤길상;최진화;조명우;이홍희;서태일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1235-1238
    • /
    • 2003
  • A rule-based CAPP(computer aided process planning) system is proposed in this research to develop integrated manufacturing process of machining and inspection using OMM(On-Machine Measurement) device. Generally workpiece composed of many primitive form features. This features are determined optimum inspection sequence by analyzing the feature information such as features-relationship, probe approach direction and etc. Proposed paper is more efficient method of CAIP(computer aided inspection planning) considered machining process

  • PDF