• Title/Summary/Keyword: Omni-directional lens

Search Result 12, Processing Time 0.025 seconds

Tolerance Analysis and Compensation Method Using Zernike Polynomial Coefficients of Omni-directional and Fisheye Varifocal Lens

  • Kim, Jin Woo;Ryu, Jae Myung;Kim, Young-Joo
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.720-731
    • /
    • 2014
  • There are many kinds of optical systems to widen a field of view. Fisheye lenses with view angles of 180 degrees and omni-directional systems with the view angles of 360 degrees are recognized as proper systems to widen a field of view. In this study, we proposed a new optical system to overcome drawbacks of conventional omni-directional systems such as a limited field of view in the central area and difficulties in manufacturing. Thus we can eliminate the undesirable reflection components of the omni-directional system and solve the primary drawback of the conventional system. Finally, tolerance analysis using Zernike polynomial coefficients was performed to confirm the productivity of the new optical system. Furthermore, we established a method of optical axis alignment and compensation schemes for the proposed optical system as a result of tolerance analysis. In a sensitivity calculation, we investigated performance degradation due to manufacturing error using Code V(R) macro function. Consequently, we suggested compensation schemes using a lens group decentering. This paper gives a good guidance for the optical design and tolerance analysis including the compensation method in the extremely wide angle system.

3D Omni-directional Vision SLAM using a Fisheye Lens Laser Scanner (어안 렌즈와 레이저 스캐너를 이용한 3차원 전방향 영상 SLAM)

  • Choi, Yun Won;Choi, Jeong Won;Lee, Suk Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.634-640
    • /
    • 2015
  • This paper proposes a novel three-dimensional mapping algorithm in Omni-Directional Vision SLAM based on a fisheye image and laser scanner data. The performance of SLAM has been improved by various estimation methods, sensors with multiple functions, or sensor fusion. Conventional 3D SLAM approaches which mainly employed RGB-D cameras to obtain depth information are not suitable for mobile robot applications because RGB-D camera system with multiple cameras have a greater size and slow processing time for the calculation of the depth information for omni-directional images. In this paper, we used a fisheye camera installed facing downwards and a two-dimensional laser scanner separate from the camera at a constant distance. We calculated fusion points from the plane coordinates of obstacles obtained by the information of the two-dimensional laser scanner and the outline of obstacles obtained by the omni-directional image sensor that can acquire surround view at the same time. The effectiveness of the proposed method is confirmed through comparison between maps obtained using the proposed algorithm and real maps.

A Study of Selecting Sequential Viewpoint and Examining the Effectiveness of Omni-directional Angle Image Information in Grasping the Characteristics of Landscape (경관 특성 파악에 있어서의 시퀀스적 시점장 선정과 전방위 화상정보의 유효성 검증에 관한 연구)

  • Kim, Heung Man;Lee, In Hee
    • KIEAE Journal
    • /
    • v.9 no.2
    • /
    • pp.81-90
    • /
    • 2009
  • Relating to grasping sequential landscape characteristics in consideration of the behavioral characteristics of the subject experiencing visual perception, this study was made on the subject of main walking line section for visitors of three treasures of Buddhist temples. Especially, as a method of obtaining data for grasping sequential visual perception landscape, the researcher employed [momentum sequential viewpoint setup] according to [the interval of pointers arbitrarily] and fisheye-lens-camera photography using the obtained omni-directional angle visual perception information. As a result, in terms of viewpoint selection, factors like approach road form, change in circulation axis, change in the ground surface level, appearance of objects, etc. were verified to make effect, and among these, approach road form and circulation axis change turned out to be the greatest influences. In addition, as a result of reviewing the effectiveness via the subjects, for the sake of qualitative evaluation of landscape components using the VR picture image obtained in the process of acquiring omni-directional angle visual perception information, a positive result over certain values was earned in terms of panoramic vision, scene reproduction, three-dimensional perspective, etc. This convinces us of the possibility to activate the qualitative evaluation of omni-directional angle picture information and the study of landscape through it henceforth.

Omni-directional Surveillance and Motion Detection using a Fish-Eye Lens (어안 렌즈를 이용한 전방향 감시 및 움직임 검출)

  • Cho, Seog-Bin;Yi, Un-Kun;Baek, Kwang-Ryul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.79-84
    • /
    • 2005
  • In this paper, we developed an omni-directional surveillance and motion detection method. The fish-eye lens provides a wide field of view image. Using this image, the equi-distance model for the fish-eye lens is applied to get the perspective and panorama images. Generally, we must consider the trade-off between resolution and field of view of an image from a camera. To enhance the resolution of the result images, some kind of interpolation methods are applied. Also the moving edge method is used to detect moving objects for the object tracking.

Omni-directional Vision SLAM using a Motion Estimation Method based on Fisheye Image (어안 이미지 기반의 움직임 추정 기법을 이용한 전방향 영상 SLAM)

  • Choi, Yun Won;Choi, Jeong Won;Dai, Yanyan;Lee, Suk Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.868-874
    • /
    • 2014
  • This paper proposes a novel mapping algorithm in Omni-directional Vision SLAM based on an obstacle's feature extraction using Lucas-Kanade Optical Flow motion detection and images obtained through fish-eye lenses mounted on robots. Omni-directional image sensors have distortion problems because they use a fish-eye lens or mirror, but it is possible in real time image processing for mobile robots because it measured all information around the robot at one time. In previous Omni-Directional Vision SLAM research, feature points in corrected fisheye images were used but the proposed algorithm corrected only the feature point of the obstacle. We obtained faster processing than previous systems through this process. The core of the proposed algorithm may be summarized as follows: First, we capture instantaneous $360^{\circ}$ panoramic images around a robot through fish-eye lenses which are mounted in the bottom direction. Second, we remove the feature points of the floor surface using a histogram filter, and label the candidates of the obstacle extracted. Third, we estimate the location of obstacles based on motion vectors using LKOF. Finally, it estimates the robot position using an Extended Kalman Filter based on the obstacle position obtained by LKOF and creates a map. We will confirm the reliability of the mapping algorithm using motion estimation based on fisheye images through the comparison between maps obtained using the proposed algorithm and real maps.

Bundle Block Adjustment of Omni-directional Images by a Mobile Mapping System (모바일매핑시스템으로 취득된 전방위 영상의 광속조정법)

  • Oh, Tae-Wan;Lee, Im-Pyeong
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.593-603
    • /
    • 2010
  • Most spatial data acquisition systems employing a set of frame cameras may have suffered from their small fields of view and poor base-distance ratio. These limitations can be significantly reduced by employing an omni-directional camera that is capable of acquiring images in every direction. Bundle Block Adjustment (BBA) is one of the existing georeferencing methods to determine the exterior orientation parameters of two or more images. In this study, by extending the concept of the traditional BBA method, we attempt to develop a mathematical model of BBA for omni-directional images. The proposed mathematical model includes three main parts; observation equations based on the collinearity equations newly derived for omni-directional images, stochastic constraints imposed from GPS/INS data and GCPs. We also report the experimental results from the application of our proposed BBA to the real data obtained mainly in urban areas. With the different combinations of the constraints, we applied four different types of mathematical models. With the type where only GCPs are used as the constraints, the proposed BBA can provide the most accurate results, ${\pm}5cm$ of RMSE in the estimated ground point coordinates. In future, we plan to perform more sophisticated lens calibration for the omni-directional camera to improve the georeferencing accuracy of omni-directional images. These georeferenced omni-directional images can be effectively utilized for city modelling, particularly autonomous texture mapping for realistic street view.

Georeferencing of Indoor Omni-Directional Images Acquired by a Rotating Line Camera (회전식 라인 카메라로 획득한 실내 전방위 영상의 지오레퍼런싱)

  • Oh, So-Jung;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.2
    • /
    • pp.211-221
    • /
    • 2012
  • To utilize omni-directional images acquired by a rotating line camera for indoor spatial information services, we should register precisely the images with respect to an indoor coordinate system. In this study, we thus develop a georeferencing method to estimate the exterior orientation parameters of an omni-directional image - the position and attitude of the camera at the acquisition time. First, we derive the collinearity equations for the omni-directional image by geometrically modeling the rotating line camera. We then estimate the exterior orientation parameters using the collinearity equations with indoor control points. The experimental results from the application to real data indicate that the exterior orientation parameters is estimated with the precision of 1.4 mm and $0.05^{\circ}$ for the position and attitude, respectively. The residuals are within 3 and 10 pixels in horizontal and vertical directions, respectively. Particularly, the residuals in the vertical direction retain systematic errors mainly due to the lens distortion, which should be eliminated through a camera calibration process. Using omni-directional images georeferenced precisely with the proposed method, we can generate high resolution indoor 3D models and sophisticated augmented reality services based on the models.

Collision Avoidance Using Omni Vision SLAM Based on Fisheye Image (어안 이미지 기반의 전방향 영상 SLAM을 이용한 충돌 회피)

  • Choi, Yun Won;Choi, Jeong Won;Im, Sung Gyu;Lee, Suk Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.3
    • /
    • pp.210-216
    • /
    • 2016
  • This paper presents a novel collision avoidance technique for mobile robots based on omni-directional vision simultaneous localization and mapping (SLAM). This method estimates the avoidance path and speed of a robot from the location of an obstacle, which can be detected using the Lucas-Kanade Optical Flow in images obtained through fish-eye cameras mounted on the robots. The conventional methods suggest avoidance paths by constructing an arbitrary force field around the obstacle found in the complete map obtained through the SLAM. Robots can also avoid obstacles by using the speed command based on the robot modeling and curved movement path of the robot. The recent research has been improved by optimizing the algorithm for the actual robot. However, research related to a robot using omni-directional vision SLAM to acquire around information at once has been comparatively less studied. The robot with the proposed algorithm avoids obstacles according to the estimated avoidance path based on the map obtained through an omni-directional vision SLAM using a fisheye image, and returns to the original path. In particular, it avoids the obstacles with various speed and direction using acceleration components based on motion information obtained by analyzing around the obstacles. The experimental results confirm the reliability of an avoidance algorithm through comparison between position obtained by the proposed algorithm and the real position collected while avoiding the obstacles.

Multi-robot Formation based on Object Tracking Method using Fisheye Images (어안 영상을 이용한 물체 추적 기반의 한 멀티로봇의 대형 제어)

  • Choi, Yun Won;Kim, Jong Uk;Choi, Jeong Won;Lee, Suk Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.6
    • /
    • pp.547-554
    • /
    • 2013
  • This paper proposes a novel formation algorithm of identical robots based on object tracking method using omni-directional images obtained through fisheye lenses which are mounted on the robots. Conventional formation methods of multi-robots often use stereo vision system or vision system with reflector instead of general purpose camera which has small angle of view to enlarge view angle of camera. In addition, to make up the lack of image information on the environment, robots share the information on their positions through communication. The proposed system estimates the region of robots using SURF in fisheye images that have $360^{\circ}$ of image information without merging images. The whole system controls formation of robots based on moving directions and velocities of robots which can be obtained by applying Lucas-Kanade Optical Flow Estimation for the estimated region of robots. We confirmed the reliability of the proposed formation control strategy for multi-robots through both simulation and experiment.

TEST OF A LOW COST VEHICLE-BORNE 360 DEGREE PANORAMA IMAGE SYSTEM

  • Kim, Moon-Gie;Sung, Jung-Gon
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.137-140
    • /
    • 2008
  • Recently many areas require wide field of view images. Such as surveillance, virtual reality, navigation and 3D scene reconstruction. Conventional camera systems have a limited filed of view and provide partial information about the scene. however, omni directional vision system can overcome these disadvantages. Acquiring 360 degree panorama images requires expensive omni camera lens. In this study, 360 degree panorama image was tested using a low cost optical reflector which captures 360 degree panoramic views with single shot. This 360 degree panorama image system can be used with detailed positional information from GPS/INS. Through this study result, we show 360 degree panorama image is very effective tool for mobile monitoring system.

  • PDF