• 제목/요약/키워드: Oligonucleotide

검색결과 444건 처리시간 0.029초

8-Hydroxyguanine in DNA Mediates Cell Death of KG-1, a Human Leukemia Cell Line by Inducing Cell Cycle Arrest and Apoptosis

  • Hyun, Jin-Won
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2001년도 International Symposium on Signal transduction in Toxicology
    • /
    • pp.89-93
    • /
    • 2001
  • All that is presently known about the actions of 8-hydroxyguanine (8-oxoguanine; oh$^{8}$ Gua) in DNA is that it harms genetic integrity. This is even speculation based upon scattered in vitro experimental data such as the mismatch of oh$^{8}$ Gua with A in stead of C and the GC longrightarrow TA transversion observed in the DNA polymerase reaction using an oh$^{8}$ Gua containing oligonucleotide.(omitted)

  • PDF

Covalent Binding of DNA onto Glass Support for the Construction of Genosensor

  • 정우성;백세환
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.709-710
    • /
    • 2000
  • 유전자센서 기술은 biomedical analysis를 위해 일반적으로 고체 상에 고정화된 DNA 분자를 이용한다. 이 센서의 검출능력은 주로 capture probe의 서열뿐만 아니라 oligonucleotide의 고체 상에 고정화 방법에 달려있다. 본 연구에서는 glass 표면에 DNA 분자를 고정화시키는 두 가지 다른 방법을 비교하였고 유전자센서의 구성에 대해 검토하였다.

  • PDF

Salmonella species 검출용 DNA Probe 분석시스템 고안

  • 이웅희;백세환
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.711-712
    • /
    • 2000
  • DNA probe assay comprising a microwell as' solid matrix for the immobilization of streptavidin (SA) and an oligonucleotide with covalently bound fluorecein as detection probe was developed. The insolubilized SA captured the biotinylated DNA product of polymerase chain reaction (PCR), and the product was denatured under a basic condition. The remaining single-stranded DNA on the solid surface was hybridized with the probe for signal generation that was performed based on enzyme-linked immuno -reactions.

  • PDF

Chlamydomonas에서 분리한 DNA Methylase와 엽록체 DNA Methylation (DNA Methylase and Chloroplast DNA Methylation in Chlamydomonas)

  • 김남곤
    • Journal of Plant Biology
    • /
    • 제35권4호
    • /
    • pp.415-423
    • /
    • 1992
  • Chlamydomonas reinhardtii 21 gr(mt+) strain의 배우체로부터 두 종류의 DNA methylase를 부분 분리하여 몇가지 기질 DNA에 대한 효소 활성을 측정하였다. DNA methylase I과 II는 동일한 pH와 ionic strength에서 서로 상이한 물리적인 성질과 서로 다른 분자량을 가지며 DNA methylase I과 II는 모두가 DNA 염기 중 adenine보다는 cytosine에 methylation을 수행하는 것으로 생각된다. 합성 DNA를 사용한 실험에서 DNA methylase I과는 달리 DNA methylase II는 poly(dA-dC)·poly(dG-dT)에서 보다 poly(dG-dC)·poly(dG-dC)의 oligonucleotide에서 더 높은 효소활성을 나타내었다. Chlamydomonas reinhardtii에서 추출한 엽록체 DNA를 기질로 사용하였을 때 DNA methylase I과 II 모두가 배우체기 보다는 영양생장기의 엽록체 DNA에 더 높은 활성을 나타내었다.

  • PDF

Polyvalent Nanoparticle-oligonudleotide conjugates: Synthesis, Properties, and Biodiagnostic/Therapeutic Applications

  • 이재승
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.7.2-7.2
    • /
    • 2009
  • Polyvalent nanoparticle-DNA conjugates exhibit a variety of unique features such as programmable assembly and disassembly, sharp melting transitons, intense optical properties, high stability, enhanced binding properties, and easy fabrication of the surface nature by chemical and physical modification. The unique properties of nanoparticle-DNA conjugates enable one to build up a number of versatile assay schemes for the detection of various targets. In addition, nanoparticle-RNA conjugates also demonstrate great promise of therapeutic applications in the context of RNA interference when combined with polymeric materials. In this presentation, representative examples of each aspect of nanoparticle-oligonucleotide conjugates will be discussed.

  • PDF

Modified T-RFLP Methods for Taxonomic Interpretation of T-RF

  • Lee, Hyun-Kyung;Kim, Hye-Ryoung;Mengoni, Alessio;Lee, Dong-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권4호
    • /
    • pp.624-630
    • /
    • 2008
  • Terminal restriction fragment length polymorphism (T-RFLP) is a method that has been frequently used to survey the microbial diversity of environmental samples and to monitor changes in microbial communities. T-RFLP is a highly sensitive and reproducible procedure that combines a PCR with a labeled primer, restriction digestion of the amplified DNA, and separation of the terminal restriction fragment (T-RF). The reliable identification of T-RF requires the information of nucleotide sequences as well as the size of T-RF. However, it is difficult to obtain the information of nucleotide sequences because the T-RFs are fragmented and lack a priming site of 3'-end for efficient cloning and sequence analysis. Here, we improved on the T-RFLP method in order to analyze the nucleotide sequences of the distinct T-RFs. The first method is to selectively amplify the portion of T-RF ligated with specific oligonucleotide adapters. In the second method, the termini of T-RFs were tailed with deoxynucleotides using terminal deoxynucleotidyl transferase (TdT) and amplified by a second round of PCR. The major T-RFs generated from reference strains and from T-RFLP profiles of activated sludge samples were efficiently isolated and identified by using two modified T-RFLP methods. These methods are less time consuming and labor-intensive when compared with other methods. The T-RFLP method using TdT has the advantages of being a simple process and having no limit of restriction enzymes. Our results suggest that these methods could be useful tools for the taxonomic interpretation of T-RFs.

Chemical Modification of Nucleic Acids toward Functional Nucleic Acid Systems

  • Venkatesan, Natarajan;Seo, Young-Jun;Bang, Eun-Kyoung;Park, Sun-Min;Lee, Yoon-Suk;Kim, Byeang-Hyean
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권5호
    • /
    • pp.613-630
    • /
    • 2006
  • Nucleic acids are virtually omnipresent; they exist in every living being. These macromolecules constitute the most important genetic storage material: the genes. Genes are conserved throughout the evolution of all living beings; they are transmitted from the parents to their offspring. Many interdisciplinary research groups are interested in modifying nucleic acids for use in a wider variety of applications. These modified oligonucleotides are used in many diverse fields, including diagnostics, detection, and therapeutics. In this account, we summarize our research efforts related to modified nucleic acid systems. First, we discuss our syntheses of modified oligonucleotides containing fluorescent tags for use as molecular probes (molecular beacons) to detect single-nucleotide polymorphisim (SNP) in nucleic acids and to distinguish between the B and Z forms of DNA. We also describe our research efforts into oligonucleotides functionalized with steroid derivatives to enhance their cell permeability, and the synthesis of several calix[4]arene-oligonucleotide conjugates possessing the ability to form defined triplexes. In addition, we have performed systematic studies to have an understanding about the functional groups necessary for a given nucleoside to behave as an organo or hydrogelator. The aggregation properties of a number of nucleoside-based phospholipids have been examined in different solvents; some of these derivatives are potential candidates for use as nucleoside-based liposomes. Finally, we also describe our research efforts toward the preparation of isoxazole- and isoxazoline-containing nucleoside derivatives and the determination of their antiviral activities.