• Title/Summary/Keyword: Olfactory receptor cell

Search Result 16, Processing Time 0.026 seconds

The Anatomy and Histology of the Olfactory Organ in the Korean Sand Goby Favonigobius gymnauchen (Pisces, Gobiidae) (한국산 날개망둑 Favonigobius gymnauchen (Pisces, Gobiidae) 후각기관의 해부 및 조직학적 연구)

  • Kim, Hyun Tae;Kim, Hyeong Su;Park, Jong Young
    • Korean Journal of Ichthyology
    • /
    • v.28 no.1
    • /
    • pp.28-34
    • /
    • 2016
  • The anatomy and histology of the olfactory organ in Favonigobius gymnauchen was investigated using a stereo microscopy, light microscopy and scanning electron microscopy. The paired olfactory organs in the dorsal snout are set in between the upper lip and the eyes. These organs are composed of two openings (anterior nostril with a tubular structure and posterior nostril), a single olfactory cavity, two nasal sac (ethmoidal and lacrimal sacs), olfactory nerve and olfactory bulb. The distributional pattern of the sensory epithelium is a only one type (continuous type). This epithelium is made up of the receptor cell, supporting cell and basal cell. The receptor cell has a only one type (ciliated receptor cell with 3~4 cilia). The non-sensory epithelium is built of the stratified epithelial cells and has mucous openings on the surface. Such an olfactory organ in F. gymnauchen may be considered to reflect its ecological habitat as a shallow water or tidal pool in the coastal zone.

Functional Analysis of Olfactory Receptors Expressed in a HEK-293 Cell System by Using Cameleons

  • Ko, Hwi-Jin;Park, Tai-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.928-933
    • /
    • 2007
  • Cameleon is a genetically engineered $Ca^{2+}$ sensing molecule consisting of two variants of the green fluorescent protein (GFP), calmodulin and calmodulin-binding protein, M13. HEK-293 cells stably expressing three types of cameleons, yellow cameleon-2, cameleon-3er, and cameleon-2nu, were constructed, and the expression and localization of these cameleons were confirmed by fluorescent imaging. Among the cameleons, the yellow cameleon-2 was selected for analyzing the change in $Ca^{2+}$ induced by the olfactory receptor-mediated signal transduction, because it is localized in the cytosol and binds to cytosolic $Ca^{2+}$ ions. Cells stably expressing yellow cameleon-2 were transfected with each of the test olfactory receptor genes, odr-10 and 17, and the expression of the olfactory receptor genes were examined using immunocytochenmical methods and RT-PCR. Stimulating each olfactory receptor with its specific odorant caused an increase in the intracellular $Ca^{2+}$ level, which was measured using yellow cameleon-2. These results demonstrate that yellow cameleon-2 can be conveniently used to examine the function of the olfactory receptors expressed in heterologous cells.

Morphological Study of the Regeneration of the Mouse Olfactory Epithelial Cells after Destruction by Intranasal Zinc Sulfate Irrigation (코 안 $ZnSO_4$ 점적으로 손상된 마우스 후각 상피세포의 재생에 대한 형태학적 연구)

  • Kang, Wha-Sun;Moon, Young-Wha
    • Applied Microscopy
    • /
    • v.37 no.4
    • /
    • pp.219-230
    • /
    • 2007
  • The morphological effects of intranasal zinc sulfate(5% solution) irrigation on the mouse olfactory epithelium and the regeneration process of olfactory receptor cells following nasal irrigation were studied with scanning and transmission electron microscope. The results were as follows: 1. The septal epithelium except some basal cells was wholly detached from the basement membrane, during the first 6 to 24 hours after 5% zinc sulfate irrigation. 2. 3 days after $ZnSO_4$ treatment, two layered septal epithelium was formed from basal cells. And microvilli were observed in the apical epithelium of newly formed olfactory epithelial cells. 3. 5 days after treatment, a lot of centrosomes and basal bodies were observed in the olfactory receptor cells, and cilia were lined up between microvilli on the apical membrane of olfactory receptor cells. And immature olfactory knob was first observed in the newly formed olfactory receptor cells. Mature olfactory knob was observed 1 week after treatment. 4. There are very many mature olfactory knobs in the olfactory receptor cells 2 weeks after intranasal zinc sulfate irrigation. These results support that treatment with 5% zinc sulfate is a good experimental model for the regeneration of mammalian nervous tissues because this method could thoroughly detach the septal epithelium. During the regeneration of olfactory receptor cells, the surface membrane of the olfactory receptor cells widen the surface with the microvilli. Then cilia, which arranged in a line, substituted for the microvilli. The part of the surface membrane with cilia protruded and finally formed the olfactory vesicle.

The Anatomy and Histoarchitecture of the Olfactory Organ in the Korean Flat-Headed Goby Luciogobius guttatus (Pisces; Gobiidae)

  • Kim, Hyun-Tae;Park, Jong-Young
    • Applied Microscopy
    • /
    • v.46 no.1
    • /
    • pp.51-57
    • /
    • 2016
  • The histology and anatomy of the olfactory organ in Luciogobius guttatus was investigated using a light microscopy and scanning electron microscopy. The paired olfactory organs in the dorsal part of the snout are situated in between the upper lip and the eyes. They consist of two nostrils, one anterior and the other posterior openings, and a single olfactory cavity. The anterior nostril, an incurrent opening, forms a short tubular structure from the skin. The posterior nostril, an excurrent opening, forms a circular structure opened to the exterior. The distributional pattern of the sensory epithelium is a continuous type. The sensory epithelium with numerous-motile cilia is made up of receptor cells, supporting cells, basal cells, and mucous cells. In contrast, the non-sensory epithelium is comprised of stratified epithelial cells and two types of mucous cells, acidic and neutral cells. The cilia number of the receptor cell is in range of 3 to 4 units. Such results in L. guttatus may reflect its ecological habit and microhabitat in the tidal zone with a periodic tide.

Functional Anatomy and Histology of the Olfactory Organ in Korean Eel Goby, Odontamblyopus lacepedii (Pisces: Gobiidae)

  • Kim, Hyun Tae;Lee, Yong Joo;Park, Jong Young
    • Applied Microscopy
    • /
    • v.48 no.1
    • /
    • pp.11-16
    • /
    • 2018
  • For Odontamblyopus lacepedii with small and turbid eyes, the gross structure and histology of the olfactory organ, which is important for its survival and protection of the receptor neuron in estuarial environment and its ecological habit, was investigated using a stereo, light and scanning electron microscopes. Externally, the paired olfactory organs with two nostrils are located identically on each side of the snout. These nostrils are positioned at the anterior tip of the upper lip (anterior nostril) and just below eyes covered with the epidermis (posterior nostril). Internally, this is built of an elongated olfactory chamber and two accessory nasal sacs. In histology, the olfactory chamber is elliptical in shape, and lined by the sensory epithelium and the non-sensory epithelium. The sensory epithelium of a pseudostratified layer consists of olfactory receptor neurons, supporting cells, basal cells and lymphatic cells. The non-sensory epithelium of a stratified layer has swollen stratified epithelial cells and mucous cells with acidic and neutral sulfomucin. From these results, we confirmed the olfactory organ of O. lacepedii is adapted to its ecological habit as well as its habitat with burrows at the muddy field with standing and murky waters.

A Study on the Structure of Peripheral Olfactory Organ in the Korean Mudskipper, Scartelaos gigas (Pisces, Gobiidae) (한국산 남방짱뚱어 Scartelaos gigas의 후각기관 구조에 관한 연구)

  • Kim, Hyun Tae;Lee, Yong Joo;Park, Jong Sung;Park, Jong Young
    • Korean Journal of Ichthyology
    • /
    • v.26 no.4
    • /
    • pp.281-287
    • /
    • 2014
  • An olfactory organ in Scartelaos gigas, so-called mudskipper known as adaptation to an amphibious lifestyle, was investigated anatomically and histologically. S. gigas possessed the paired olfactory organ comprising respectively the one elongated canal and two nasal sacs, lacrimal and ethmoidal nasal sac. The sensory epithelium developed partly in the canal contained four distinct types of cells: (1) receptor cell with 3 to 4 cilia in number, (2) supporting, (3) basal, (4) mucus cell. The sensory epithelium was also of transitional layer as multi cellularity structure. The non-sensory epithelium had no sensory elements. The two nasal sacs possessed typically a lot of mucin droplets. These results might be considered that anatomical structure and histological characters of the olfactory organ showing in S. gigas is adapted to semi-aquatic life associated with its ecological habit and habitat.

Morphology and Histology of the Olfactory Organ in the Korean Endemic Species, Pseudobagrus koreanus (Cypriniformes, Cyprinidae) (한국 고유종 눈동자개 Pseudobagrus koreanus 후각기관의 형태 및 조직학적 특성 연구)

  • Kim, Hyun-Tae;Chae, Dong-Hyun
    • Korean Journal of Ichthyology
    • /
    • v.34 no.3
    • /
    • pp.153-159
    • /
    • 2022
  • The olfactory organ of a Korean endemic species, Pseudobagrus koreanus, was investigated to describe its morphology and histology and analyze correlation between habitat environment and its ecological habits and characters, using a stereo microscope, a light microscope, and a scanning electron microscope. Its external morphology showed tubular anterior nostril at the tip of the snout and slit posterior nostril at the base of the nasal barbel. The olfactory chamber showed the rosette structure consisting of numerous lamellae radial and parallel to the medium raphe. The olfactory lamella has the sensory epithelium with olfactory receptor nuerons, supporting cells, basal cells, lymphatic cells, plasma cells and the non-sensory epithelium with stratified epithelial cells, mucous cells, lymphatic cells. In particular, 1) 41~43 (n=20) lamellae, 2) lymphatic cells and plasma cells, 3) mucous cells including neutral polysaccharid may be olfactory characteristics relevant to a stagnant or a standing habitat environment, nocturnal habit dependent on olfaction, and taxonomic characters compared at least to other catfish species.

Mass Spectrometry-Based Screening Platform Reveals Orco Interactome in Drosophila melanogaster

  • Yu, Kate E.;Kim, Do-Hyoung;Kim, Yong-In;Jones, Walton D.;Lee, J. Eugene
    • Molecules and Cells
    • /
    • v.41 no.2
    • /
    • pp.150-159
    • /
    • 2018
  • Animals use their odorant receptors to receive chemical information from the environment. Insect odorant receptors differ from the G protein-coupled odorant receptors in vertebrates and nematodes, and very little is known about their protein-protein interactions. Here, we introduce a mass spectrometric platform designed for the large-scale analysis of insect odorant receptor protein-protein interactions. Using this platform, we obtained the first Orco interactome from Drosophila melanogaster. From a total of 1,186 identified proteins, we narrowed the interaction candidates to 226, of which only two-thirds have been named. These candidates include the known olfactory proteins Or92a and Obp51a. Around 90% of the proteins having published names likely function inside the cell, and nearly half of these intracellular proteins are associated with the endomembrane system. In a basic loss-of-function electrophysiological screen, we found that the disruption of eight (i.e., Rab5, CG32795, Mpcp, Tom70, Vir-1, CG30427, Eaat1, and CG2781) of 28 randomly selected candidates affects olfactory responses in vivo. Thus, because this Orco interactome includes physiologically meaningful candidates, we anticipate that our platform will help guide further research on the molecular mechanisms of the insect odorant receptor family.

An Anatomical and Histochemical Study of the Olfactory Organ in Rice-fish Oryzias sinensis(Pisces: Adrianichthyidae) in South Korea (한국산 대륙송사리 Oryzias sinensis(Pisces: Adrianichthyidae) 후각기관의 해부 및 조직화학적 연구)

  • Kim, Hyun Tae;Lee, Yong Joo;Park, Jong Young
    • Korean Journal of Ichthyology
    • /
    • v.28 no.4
    • /
    • pp.223-228
    • /
    • 2016
  • The anatomy and histology of the olfactory organ in Oryzias sinensis was researched using a stereo microscope and light microscope. In the gross structure, the paired olfactory organs on the dorsal part of the head consist of two nostrils (a circular anterior nostril and a slit posterior nostril in a distance), a single olfactory chamber and a single accessory nasal sac. In the histological study, the epithelium of the olfactory chamber is classified into both sensory and non-sensory regions. The sensory epithelium consists of olfactory receptor neurons, supporting cells, basal cells and vesicles, and is islet in distributional pattern. The non-sensory epithelium is composed of stratified epithelial cells and two types of mucous cells (acidic and neutral cells). The epithelium of the accessory nasal sac has swollen stratified epithelial cells, mucous cells with a rich glycoprotein. Such an olfactory anatomy and histology of O. sinensis may reflect its habitat surrounding stagnant and polluted water.