• 제목/요약/키워드: Olfactory Mode

검색결과 5건 처리시간 0.024초

The Analysis of Sulfur Compounds of Odorous Material in Kunsan Industrial Complex

  • Kim, Seong-Cheon;Kim, Ki-Hyun;Choi, Yeo-Jin
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2005년도 국제학술대회
    • /
    • pp.399-405
    • /
    • 2005
  • In this study, we investigated the gas chromatography (GC) and pulsed flame photometric detection (PFPD) system for the analysis of four major reduced S compounds including hydrogen sulfide ($H_2S)$; methyl mercaptan ($CH_3SH$); dimethyl sulfide (DMS); and dimethyl disulfide(DMDS) contained in environmental samples. To analyze these compounds in high concentration range (above ppb level), we developed a high mode analytical setting with the loop-injection system. By contrast, we also established a low mode setting for the analysis of low concentration samples (ppt-level samples from ambient air) by the combination with thermal desorption unit(TDU). Comparative analysis of both settings revealed that relative detection properties of four S compounds are systematic enough. The results of high mode analysis indicated that the patterns were systematic among compounds: H2S exhibited the lowest sensitivity, while DMBS showed the strongest one. The results were also compared in terms of sensitivity reductions for all compounds by dividing slope ratios between low and high mode system. Although low mode system exhibited significant reductions on the order of a few tens times, their detection characteristics were highly consistent as it was shown in the high mode setting. To learn more about absolute and relative relations between two different modes of S analysis, future studies may have to be directed to cover more complicated nature of GC/PFPD performance. Hydrogen sulfide($H_2S$) was over in summer about low level of olfactory sense 410 ppt, Methyl mercaptan(C$H_3SH$) was over in apring and summer about low level of olfactory sense 70, Dimethyl sulfide(DMS) was not over in four season about low level of olfactory sense 2,200 ppt. Carbon disulfide($CS_2$) was not over in four deason about Tow level of olfactory sense 210,000, Dimethyl disulfide(DMDS) was not over in summer about low level of olfactory sense2,000.

  • PDF

A Development of Multi-Emotional Signal Receiving Modules for Cellphone Using Robotic Interaction

  • Jung, Yong-Rae;Kong, Yong-Hae;Um, Tai-Joon;Kim, Seung-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2231-2236
    • /
    • 2005
  • CP (Cellular Phone) is currently one of the most attractive technologies and RT (Robot Technology) is also considered as one of the most promising next generation technology. We present a new technological concept named RCP (Robotic Cellular Phone), which combines RT and CP. RCP consists of 3 sub-modules, $RCP^{Mobility}$, $RCP^{Interaction}$, and $RCP^{Integration}$. $RCP^{Interaction}$ is the main focus of this paper. It is an interactive emotion system which provides CP with multi-emotional signal receiving functionalities. $RCP^{Interaction}$ is linked with communication functions of CP in order to interface between CP and user through a variety of emotional models. It is divided into a tactile, an olfactory and a visual mode. The tactile signal receiving module is designed by patterns and beat frequencies which are made by mechanical-vibration conversion of the musical melody, rhythm and harmony. The olfactory signal receiving module is designed by switching control of perfume-injection nozzles which are able to give the signal receiving to the CP-called user through a special kind of smell according to the CP-calling user. The visual signal receiving module is made by motion control of DC-motored wheel-based system which can inform the CP-called user of the signal receiving through a desired motion according to the CP-calling user. In this paper, a prototype system is developed for multi-emotional signal receiving modes of CP. We describe an overall structure of the system and provide experimental results of the functional modules.

  • PDF

Human umbilical cord blood plasma alleviates age-related olfactory dysfunction by attenuating peripheral TNF-α expression

  • Lee, Byung-Chul;Kang, Insung;Lee, Seung-Eun;Lee, Jin Young;Shin, Nari;Kim, Jae-Jun;Choi, Soon Won;Kang, Kyung-Sun
    • BMB Reports
    • /
    • 제52권4호
    • /
    • pp.259-264
    • /
    • 2019
  • Social requirements are needed for living in an aging society and individual longevity. Among them, improved health and medical cares, appropriate for an aging society are strongly demanded. Human cord blood-derived plasma (hUCP) has recently emerged for its unique anti-aging effects. In this study, we investigated brain rejuvenation, particularly olfactory function, that could be achieved by a systemic administration of young blood and its underlying mechanisms. Older than 24-month-old mice were used as an aged group and administered with intravenous injection of hUCP repetitively, eight times. Anti-aging effect of hUCP on olfactory function was evaluated by buried food finding test. To investigate the mode of action of hUCP, brain, serum and spleen of mice were collected for further ex vivo analyses. Systemic injection of hUCP improved aging-associated olfactory deficits, reducing time for finding food. In the brain, although an infiltration of activated microglia and its expression of cathepsin S remarkably decreased, significant changes of proinflammatory factors were not detected. Conversely, peripheral immune balance distinctly switched from predominance of Type 1 helper T (Th1) cells to alternative regulatory T cells (Tregs). These findings indicate that systemic administration of hUCP attenuates age-related neuroinflammation and subsequent olfactory dysfunction by modulating peripheral immune balance toward Treg cells, suggesting another therapeutic function and mechanism of hUCP administration.

유비쿼터스 RCP 상호작용을 위한 다감각 착신기능모듈의 개발 (A Development of Multi-Emotional Signal Receiving Modules for Ubiquitous RCP Interaction)

  • 장경준;정용래;김동욱;김승우
    • 제어로봇시스템학회논문지
    • /
    • 제12궈1호
    • /
    • pp.33-40
    • /
    • 2006
  • We present a new technological concept named RCP (Robotic Cellular Phone), which combines RT and CP. That is an ubiquitous robot. RCP consists of 3 sub-modules, RCP Mobility, RCP interaction, and RCP Integration. RCP Interaction is the main focus of this paper. It is an interactive emotion system which provides CP with multi-emotional signal receiving functionalities. RCP Interaction is linked with communication functions of CP in order to interface between CP and user through a variety of emotional models. It is divided into a tactile, an olfactory and a visual mode. The tactile signal receiving module is designed by patterns and beat frequencies which are made by mechanical-vibration conversion of the musical melody, rhythm and harmony. The olfactory signal receiving module is designed by switching control of perfume-injection nozzles which are able to give the signal receiving to the CP-called user through a special kind of smell according to the CP-calling user. The visual signal receiving module is made by motion control of DC-motored wheel-based system which can inform the CP-called user of the signal receiving through a desired motion according to the CP-calling user. In this paper, a prototype system is developed far multi-emotional signal receiving modes of CP. We describe an overall structure of the system and provide experimental results of the functional modules.

Comparative analysis of volatile organic compounds from flowers attractive to honey bees and bumblebees

  • Dekebo, Aman;Kim, Min-Jung;Son, Minwoong;Jung, Chuleui
    • Journal of Ecology and Environment
    • /
    • 제46권1호
    • /
    • pp.62-75
    • /
    • 2022
  • Background: Pollinators help plants to reproduce and support economically valuable food for humans and entire ecosystems. However, declines of pollinators along with population growth and increasing agricultural activities hamper this mutual interaction. Nectar and pollen are the major reward for pollinators and flower morphology and volatiles mediate the specialized plant-pollinator interactions. Limited information is available on the volatile profiles attractive to honey bees and bumblebees. In this study we analyzed the volatile organic compounds of the flowers of 9 different plant species that are predominantly visited by honey bees and bumblebees. The chemical compositions of the volatiles were determined using a head space gas chromatography-mass spectrometry (GC-MS) method, designed to understand the plant-pollinator chemical interaction. Results: Results showed the monoterpene 1,3,6-octatriene, 3,7-dimethyl-, (E) (E-𝞫-ocimene) was the dominating compound in most flowers analyzed, e.g., in proportion of 60.3% in Lonicera japonica, 48.8% in Diospyros lotus, 38.4% Amorpha fruticosa and 23.7% in Robinia pseudoacacia. Ailanthus altissima exhibited other monoterpenes such as 3,7-dimethyl-1,6-octadien-3-ol (𝞫-linalool) (39.1%) and (5E)-3,5-dimethylocta-1,5,7-trien-3-ol (hotrienol) (32.1%) as predominant compounds. Nitrogen containing volatile organic compounds (VOCs) were occurring principally in Corydalis speciosa; 1H-pyrrole, 2,3-dimethyl- (50.0%) and pyrimidine, 2-methyl- (40.2%), and in Diospyros kaki; 1-triazene, 3,3-dimethyl-1-phenyl (40.5%). Ligustrum obtusifolium flower scent contains isopropoxycarbamic acid, ethyl ester (21.1%) and n-octane (13.4%) as major compounds. In Castanea crenata the preeminent compound is 1-phenylethanone (acetophenone) (46.7%). Conclusions: Olfactory cues are important for pollinators to locate their floral resources. Based on our results we conclude monoterpenes might be used as major chemical mediators attractive to both honey bees and bumblebees to their host flowers. However, the mode of action of these chemicals and possible synergistic effects for olfaction need further investigation.